MDCT의 딥러닝 재구성 기법(TrueFidelity, TF)의 유용성을 평가하고자 기존의 필터보정역투영법(Filtered back projection, FBP)과 적응형 통계적 재구성 기법(Adaptive Statistical Iterative Reconstruction-Veo, ASIR-V)의 화질을 비교 평가하였다. FBP, ASIR-V 50%, TF-H의 재구성 기법에서 선량을 17.29 mGy로 고정한 것과 10.37 mGy, 12.10 mGy, 13.83 mGy, 15.56 mGy로 변화시킨 영상을 획득하여 노이즈, CNR, SSIM을 측정하였다. 17.29 mGy에서 재구성 기법 변화를 주었을 때 TF-H가 FBP, ASIR-V에 비해 화질이 우수하다. 선량에 변화를 주었을 때 10.37 mGy TF-H와 FBP 비교 시 노이즈, CNR, SSIM은 유의한 차이가 있고(p<0.05), 10.37 mGy TF-H와 ASIR-V 50% 비교 시 유의한 차이가 없다(p>0.05). 선량이 가장 높은 15.56 mGy ASIR-V 50%와 선량이 가장 낮은 10.37 mGy TF-H 화질이 동일하므로 TF-H는 30%의 선량 감소 효과가 있다. 따라서 딥러닝 재구성 기법(TF)은 반복적 재구성 기법(ASIR-V)과 필터보정역투영법(FBP)보다 선량을 감소시킬 수 있었다. 이로 인해 환자의 피폭선량을 감소시킬 것으로 사료된다.
ASIR기법은 statistical noise modeling을 사용하여 CT image를 reconstruction하는 방법으로, mA를 낮춰도 이미지 질을 보전하며 noise reduction 효과가 있다고 알려져 왔다. 본 논문은 본원에서 주로 하는 bone SPECT/CT에 ASIR 기법을 적용하여 이미지를 평가하였다. GE의 Discorvery 670을 이용하여 120 kVp, 100 mA를 기준으로 mA를 변화시켜서 ASIR의 적용 전과 적용 후 영상을 비교하였다(ASIR level: 20-80%). Anthropomorphic phantom으로 ASIR (%)의 변화에 따른 SPECT image의 감쇠 보정 정도를 측정하였다. 두번째로 ACR phantom으로 CT image의 CNR, image noise, spatial resolution을 평가하였다. 세 번째로 lower torso phantom을 이용하여 spine에 최적화할 수 있는 ASIR level을 선택한 후 2명의 bone SPECT/CT follow up 환자에게 ASIR를 적용하여 영상을 획득한 후 5년 이상의 경험이 있는 10명의 방사선사에게 blind test를 시행하였다. SPECT의 영상의 감쇠 보정 정도는 ASIR의 변화와는 무관하게 모두 유의한 차이가 없었다(P>0.05). ASIR을 적용했을 때 CT image의 noise는 mA의 변화에 따라 최소 17%에서 최대 52%까지 감소하였다. ASIR를 적용하지 않았을 때 CNR은 40 mA에서 0.42를 보여준 반면 ASIR를 적용한 40 mA (ASIR 60%)에서도 0.8 이상을 유지하였다. High contrast 영역의 비교에서는 ASIR 적용과 상관없이 40 mA까지 12 lp/cm 영역을 구별할 수 있었다. Lower torso phantom의 spine image에서 100 mA image와 육안적으로 비슷한 ASIR level은 60% (40 mA) 정도였고, bone SPECT/CT에 적용한 후 blind test에서 육안적으로 ASIR를 적용하지 않았을 때와 차이를 구별하지 못하였다. 본 논문의 결과는 SPECT/CT에서 ASIR 기법을 사용했을 때 SPECT와 CT image의 특별한 영상의 질 저하 없이 radiation dose를 줄일 수 있다는 것을 보여준다. 또한 관심부위가 bone에 한정되어 있는 bone SPECT/CT 특성상 더 높은 ASIR level도 가능할 것으로 사료된다.
저 선량 흉부 전산화단층촬영(low dose computed tomography; LDCT)검사 시 기존의 검사방법인 필터보정역투영법인 FBP(filted back projection)와 적응식 통계적 반복 재구성법인 ASIR(adaptive statistical iterative reconstruction)의 적용 및 관전압 변화에 따른 영상의 화질과 피폭선량을 비교 평가해 보고자 하였다. 흉부 phantom을 이용하여 재구성방법에 따라 FBP와 ASIR적용(10%, 20%)을 하였고, 관전압(100kVp, 120kVp)에 변화를 주어 실험을 하였다. 화질평가를 위해 back-ground noise와 signal-noise ratio(SNR), contrast-noise ratio(CNR)를 구하였으며, 선량평가를 위해 CTDIvol과 DLP를 구하였다. 화질평가에 있어 kVp에 따른 ascending aorta(AA) SNR과 inpraspinatus muscle(IM) SNR은 AA SNR과 IM SNR은 유의한 차이가 있었다(p < 0.05). 선량평가에 있어 CTDIvol과 DLP는 유의한 차이가 있었으며(p < 0.05), CTDIvol은 120 kVp, FBP가 2.6 mGy, 120 kVp, 10%-ASIR가 2.38 mGy, 120kVp, 20%-ASIR가 2.17 mGy로 0.43 mGy 감소하였고, 100 kVp, FBP가 1.61 mGy, 100 kVp, 10%-ASIR가 1.48 mGy, 100 kVp, 20%-ASIR가 1.34 mGy로 0.27 mGy 감소하였다. 또한 DLP에서는 120 kVp, FBP가 $103.21mGy{\cdot}cm$, 120 kVp, 10%-ASIR가 $94.57mGy{\cdot}cm$, 120 kVp, 20%-ASIR가 $85.94mGy{\cdot}cm$로 $17.27mGy{\cdot}cm$(16.7%) 감소하였고, 100 kVp, FBP가 $63.87mGy{\cdot}cm$, 100 kVp, 10%-ASIR가 $58.54mGy{\cdot}cm$, 100 kVp, 20%-ASIR가 $53.25mGy{\cdot}cm$로 $10.62mGy{\cdot}cm$(16.7%)로 감소하였다. 재구성방법에 따른 FBP와 ASIR 10%, 20%에서는 화질의 변화 없이 선량을 줄일 수 있어 흉부 low dose CT검사 시 ASIR 20%적용하여 검사하는 것이 좋으며, 관전압 변화에 따른 120 kVp와 100 kVp에서는 선량은 크게 줄어들었지만, noise가 증가하여 화질이 떨어지는 것으로 나타났다.
저선량흉부 CT (Low Dose chest CT, LDCT)에서 Scout 관전압을 변화시키고 scan parameter인 자동노출제어장치(Auto Exposure Control, AEC)와 적응식 반복재구성기법(Adaptive Statistical Iterative Reconstruction, ASIR)등을 적용하여 최적의 프로토콜을 찾음으로써 방사선 피폭선량과 화질을 평가하고자 하였다. Scout 관전압을 80, 100, 120, 140 kV로 변화시키며 LDCT 프로토콜로 5회 반복 측정 후 선량을 비교하기 위해 장비에서 제공된 Dose report를 이용하여 연구 목적에 적합한 관전압을 선택하였다. 120 kV, 30 mAs의 조건으로 기본 LDCT 촬영한 후, 이 조건에 ASIR 50%를 적용하였으며 신호대잡음비와 대조도대잡음비를 평가하기 위해 배경의 노이즈를 측정하였다. 선량 비교를 위해 장비에서 제공되는 CTDIvol과 선량길이곱(Dose length product, DLP)를 식을 이용하여 비교 분석하였다. 그 결과 S140 + LDCT + ASIR 50 + AEC를 적용한 프로토콜에서 고식적인 LCDT보다 방사선 피폭선량을 감소시키고 영상의 질을 향상시켰으며 최적의 프로토콜을 얻을 수 있었으며 LDCT는 매 검사 시 필요 이상의 피폭선량이 우려되기 때문에 적절한 Parameter를 적용하는 것이 중요하며, 향후 LDCT를 이용한 건강검진에서 국민의 건강에 이바지 하는데 긍정적인 요인으로 작용될 것으로 사료된다.
Purpose: The purpose of this study has attempted to evaluate and compare the image evaluation and exposure dose by respectively applying Filtered Back Projection(FBP), the existing test method, and Adaptive Statistical Iterative Reconstruction(ASIR) with different values of tube voltage during the Low Dose Computed Tomography(LDCT). Materials and Methods: With the image reconstruction method as basis, Chest Phantom was utilized with the FBP and ASIR set at 10%, 20% respectively, and the change of Tube Voltage (100kVp, 120kVp). For image evaluation, Back ground noise, Signal to Noise ratio(SNR) and Contrast to Noise ratio(CNR) were measured, and, for dose evaluation, CTDIvol and DLP were measured respectively. The statistical analysis was tested with SPSS(ver. 22.0), followed by ANOVA Test conducted after normality test and homogeneity test. (p<0.05). Results: In terms of image evaluation, there was no outstanding difference in Ascending Aorta(AA) SNR and Infraspinatus Muscle(IM) SNR with the different values of ASIR application(p<0.05), but a significant difference with the different amount of tube voltage(p>0.05). Also, there wasn't noticeable change in CNR with ASIR and different amount of Tube Voltage (p<0.05). However, in terms of dose evaluation, CTDIvol and DLP showed contrasting results(p<0.05). In terms of CTDIvol, the measured values with the same tube voltage of 120kVp were 2.6mGy with No-ASIR and 2.17mGy with 20%-ASIR respectively, decreased by 0.43mGy, and the values with 100kVp were 1.61mGy with No-ASIR and 1.34mGy with 20%-ASIR, decreased by 0.27mGy. In terms of DLP, the measured values with 120kVp were $103.21mGy{\cdot}cm$ with No-ASIR and $85.94mGy{\cdot}cm$ with 20%-ASIR, decreased by $17.27mGy{\cdot}cm$(about 16.7%), and the values with 100kVp were $63.84mGy{\cdot}cm$ with No-ASIR and $53.25mGy{\cdot}cm$ with 20%-ASIR, a decrease by $10.62mGy{\cdot}cm$(about 16.7%). Conclusion: At lower tube voltage, the rate of dose significantly decreased, but the negative effects on image evaluation was shown due to the increase of noise. For the future, through the result of the experiment, it is considered that the method above would be recommended for follow-up patients or those who get health checkup as long as there is no interference on the process of diagnosis due to the characteristics of Low Dose examination.
소아 전산화단층촬영(Computed Tomography, CT) 검사 시 어린 환자들의 협조가 어려워 검사 실패나 재검사가 빈번히 발생할 수 있다. 딥러닝 이미지 재구성(Deep Learning Image Reconstruction, DLIR) 방법은 방사선 감수성이 높은 소아 환자들의 CT 검사에서 재검사율을 낮추면서 진단적 가치가 높은 영상을 획득할 수 있다. 본 연구에서는 DLIR을 적용하여 소아 흉부 CT 검사에서 호흡이나 움직임으로 인한 노이즈를 줄이고 임상적으로 유용한 영상을 얻기 위한 가능성을 조사하였다. 경상남도 소재의 P병원에서 7세 미만의 소아 43명의 흉부 CT 검사 데이터를 후향적으로 분석하였으며, 필터링 역 투영 재구성법(Filtered Back Projection, FBP), 반복적 재구성법(Adaptive Statistical Iterative Reconstruction, ASIR-50), 딥러닝 알고리즘인 True Fidelity-Middle(TF-M)의 영상을 비교하였다. 조영 증강된 흉부 영상 중 오른쪽 상행 대동맥(Ascending Aorta, AA)과 등 근육(Back Muscle, BM)에 동일한 ROI를 그리고 각 영상에서 HU값을 이용하여 노이즈(Standard deviation, SD)를 측정하였다. 통계분석은 SPSS(ver. 22.0)를 사용하여 세 측정치의 평균값을 일원 배치 분산분석(One-way ANOVA)으로 분석하였다. 연구의 결과로 AA의 SD값은 FBP=25.65±3.75, ASIR-50=19.08±3.93, TF-M=17.05±4.45 로 나타났으며(F=66.72, p=0.00), BM의 SD값은 FBP=26.64±3.81, ASIR-50=19.19±3.37, TF-M=19.87±4.25 로 나타났다(F=49.54, p=0.00). 사후검정의 결과는 세 그룹간 유의한 차이가 있었다. DLIR 재구성 방법은 기존의 재구성 방법과 비교하여 유의하게 낮은 노이즈 값을 보였다. 따라서 딥러닝 알고리즘인 TrueFidelity-Middle(TF-M)의 적용은 소아 흉부 CT 검사 시 호흡이나 움직임에 의한 영상 화질의 저하를 줄일 수 있어 임상적으로 매우 유용하게 활용될 것으로 기대된다.
심장 CT 검사시 적응식 통계적 반복 재구성법을 이용하여 체질량 지수에 따른 관전압 변화에 대한 방사선 피폭선량에 대하여 알아보고자 하였다. 심장 CT 검사를 시행 받은 환자를 BMI에 따른 관전압에 따라 네 개의 군으로 나누어[A군(n=20), Non-ASIR, BMI < 25, 100 kVp; B군(n=20), Non-ASIR, BMI > 25, 120 kVp; C군(n=20), 40% ASIR BMI < 25, 100 kVp; D군(n=20), 40% ASIR, BMI > 25, 120 kVp] 대동맥 중심부와 우관상동맥, 좌전하행동맥에 관심영역을 설정 한 후 CT값(number)측정하여 평균값과 표준편차를 분석하였다. 영상 잡음은 A군과 C군 사이에는 통계적으로 유의한 차이가 있었으며, A군이 C군보다 노이즈가 유의하게 높았다(group A, 494 ${\pm}$ 32 HU; group C, 482 ${\pm}$ 48 HU: P<0.05). 또한, B군과 D군 사이에는 통계적으로 유의한 차이가 있었으며, B군이 D군보다 노이즈가 유의하게 높았다(group B, 510 ${\pm}$ 45 HU; group D, 480 ${\pm}$ 82 HU: P<0.05). 영상의 정성적 분석에서 관상동맥 분절별로 임상평가 한 결과 평균값은 A군은 4.13${\pm}$0.2, B군은4.18${\pm}$0.1, C군은 4.1${\pm}$0.2, D군은 4.15${\pm}$0.1로 A군, B군, C군, D군 모두 통계적으로 유의한 차이가 없었으며(P>0.05), 모든 군에서 진단에 적절한 영상을 보였다. 피폭선량은 A군은 8.6${\pm}$0.9, B군은 14.9${\pm}$0.4, C군은 5.8${\pm}$0.5, D군은 10.1${\pm}$0.6 mSv 로 나타났다.
기술의 발전으로 CT 검사에 있어 환자가 받는 피폭선량을 줄이기 위한 노력은 새로운 재구성 기법 개발과 함께 계속 진행되고 있다. 최근에는 반복적 재구성 기법의 한계를 극복하기 위해 딥러닝 재구성 기법이 개발되었다. 본 연구는 소아 흉부 CT 영상에서 재구성 기법에 따른 영상의 유용성을 평가하였다. 환자 실험은 2021년 1월 2일부터 2022년 12월 31일까지 경상남도 P 병원에서 흉부 조영 CT 검사를 받은 소아 환자 중 85명을 대상으로 연구를 진행하였다. 팬텀 실험에 사용된 팬텀은 Pediatric Whole Body Phantom PBU-70이다. 검사 후 FBP, ASIR-V(50%), DLIR(TF-Medium,High)로 영상을 재구성했고, 동일한 크기의 ROI를 설정하여 HU값, SD값을 획득하여 SNR, CNR 값을 산출하여 영상을 평가하였다. 그 결과 DLIR의 TF-H가 모든 실험에서 ASIR-V(50%)와 TF-M에 비해 잡음 값이 가장 낮았으며, SNR과 CNR의 값이 가장 높았다. 소아 흉부 CT 검사에서 DLIR이 적용된 TF 영상이 ASiR-V 영상보다 잡음이 적었고, CNR과 SNR은 높은 것으로 나타났으며 DLIR이 적용되면 기존의 재구성법에 비해 영상의 질이 더 향상될 것으로 판단된다.
본 연구는 두부 컴퓨터 단층 촬영 검사 시 적응식 통계적 반복 재구성법인 알고리즘을 적용하여 노이즈 및 화질평가, 피폭선량의 감소에 대하여 알아보고자 하였다. 두부 CT 검사 시 ASIR를 적용하지 않은 군[A군], ASIR 50 % 적용한군 [B군]으로 나누어 검사하였다. 팬텀연구에서 측정된 CT 노이즈 평균값의 측정결과는 B군이 A군보다 중심부(A)와 주변부(B, C, D)에서 각 각 46.9 %, 48.2 %, 43.2 %, 47.9 %가 감소되었다. 영상화질 평가에서 정량적 분석방법으로 CT 값(number)을 측정하여 잡음(noise) 정도를 분석하였다. 영상 잡음은 A군과 B군 사이에는 통계적으로 유의한 차이가 있었으며, A군이 B군보다 영상 잡음이 유의하게 높았다(group A ;우엽에서 31.87 HU, 좌엽에서 31.78 HU, group B ; 우엽에서 26.6 HU, 좌엽에서 30.42 HU : P<0.05). 영상의 정성적 평가방법으로 두부 임상 영상 평가표에 의해 평가한 결과 80점 만점에 A군의 관찰자 1의 점수는 73.17 점, 관찰자 2의 점수는 74.2 점으로 평가하였으며, B군의 관찰자 1의 점수는 71.77 점, 관찰자 2의 점수는 72.47 점으로 평가하였다. 통계적으로 유의한 차이가 없었으며(P>0.05), 진단에 적절한 영상을 보였다. 피폭선량은 ASIR 50 % 적용하여 검사함으로써 영상의 질적 저하 없이 방사선 피폭선량을 47.6 % 감소 시킬수 있었다. 결론적으로 임상 부위에 ASIR가 적용이 된다면 훨씬 더 적은 선량으로도 검사가 가능할 것으로 사료되며, 검사 시에 검사자가 판단하는데 있어 긍정적인 요인이 될 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.