• Title/Summary/Keyword: Adaptive Robust Control

Search Result 537, Processing Time 0.035 seconds

Design of a Speed Controller for the Separately Excited DC Motor in Pure Electric Vehicle Applications (순 전기 자동차용 타여자 직류기의 속도제어기 설계)

  • Hyun, Keun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.181-184
    • /
    • 2006
  • In this study, an robust adaptive backstepping controller is proposed for the speed control of separately excited DC motor with uncertainties and disturbances. Armature and field resistance, damping coefficient and load torque are considered as uncertainties and noise generated at applying load torque to motor is also considered. It shows that the backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation and experiment results are provided to demonstrate the effectiveness of the proposed controller in the future.

  • PDF

Adaptive PI Controller Design Based on CTRNN for Permanent Magnet Synchronous Motors (영구자석 동기모터를 위한 CTRNN모델 기반 적응형 PI 제어기 설계)

  • Kim, Il-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.635-641
    • /
    • 2016
  • In many industrial applications that use the electric motors robust controllers are needed. The method using a neural network in order to design a robust controller when a disturbance occurs is studied. Backpropagation algorithm, which is used in a conventional neural network controller is used in many areas, but when the number of neurons in the input layer, hidden layer and output layer of the neural network increases the processing speed of the learning process is slow. In this paper an adaptive PI(Proportional and Integral) controller based on CTRNN(Continuous Time Recurrent Neural Network) for permanent magnet synchronous motors is presented. By varying the load and the speed the validity of the proposed method is verified through simulation and experiments.

The Design of a Fuzzy Adaptive Controller for the Process Control (공정제어를 위한 퍼지 적응제어기의 설계)

  • Lee Bong Kuk
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.7
    • /
    • pp.31-41
    • /
    • 1993
  • In this paper, a fuzzy adaptive controller is proposed for the process with large delay time and unmodelled dynamics. The fuzzy adaptive controller consists of self tuning controller and fuzzy tuning part. The self tuning controller is designed with the continuous time GMV (generalized minimum variance) using emulator and weighted least square method. It is realized by the hybrid method. The controller has robust characteristics by adapting the inference rule in design parameters. The inference processing is tuned according to the operating point of the process having the nonlinear characteristics considering the practical application. We review the characteristics of the fuzzy adaptive controller through the simulation. The controller is applied to practical electric furnace. As a result, the fuzzy adaptive controller shows the better characteristics than the simple numeric self tuning controller and the PI controller.

  • PDF

A High-Performance Speed Sensorless Control System for Induction Motor with Direct Torque Control (직접 토크제어에 의한 속도검출기 없는 유도전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.18-27
    • /
    • 2002
  • This paper presents an implementation of digital high-performance speed sensorless control system of an induction motor drives with Direct Torque Control(DTC). The system consists of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control for wide speed range. The speed estimator is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal estimation. In order to prove the suggested speed sensorless control algorithm, and to obtain a high-dynamic robust adaptive performance, we have some simulations and actual experiments at low(20rpm) and high(1000rpm) speed areas. The developed speed sensorless system are shown a good speed control response characteristic, and high performance features using 2.2[kW] general purposed induction motor.

Finite-time Adaptive Non-singular Terminal Sliding-mode Control for Robot Manipulator (로봇 매니퓰레이터에 적용을 위한 유한한 시간 적응 비특이 터미널 슬라이딩 모드 제어 기법)

  • Baek, Jae-Min;Yun, Kyeong-Soo;Kang, Min-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.4
    • /
    • pp.137-143
    • /
    • 2021
  • We propose an adaptive non-singular terminal sliding-mode control for the fast finite-time convergence (FANTSMC) in robot manipulator. The proposed FANTSMC approach is developed to be applied without singularity in robot manipulator, which has a new pole-placement control with the non-singular terminal sliding variable while generating the desirable control torque. Moreover, the switching gain is designed to suppress the time-delayed estimation error appropriately, which aims at providing the high robust tracking performance. Also, the proposed one employs one-sample delayed information to cancel out the system uncertainties and disturbances. For these reasons, it offers strong attraction within the finite time. It is shown that the tracking performance of the proposed FANTSMC approach is guaranteed to be uniformly ultimately bounded through the Lyapunov stability. The effectiveness of the proposed FANTSMC approach is illustrated in simulations, which is compared with that of the up-to-date control approach.

A Study on Sliding Mode Control of EHA System for Robust Control (견실한 추종 제어를 위한 EHA 시스템의 슬라이딩 모드제어에 관한 연구)

  • Park, Yong-Ho;Park, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 2009
  • The response characteristics of EHA systems are sensitive to the temperature change of working fluid because the temperature of working fluid causes the variation of system parameters such as effective bulk modulus and viscous friction coefficient. In this paper, a precise position control of EHA system using the adaptive sliding mode control system is suggested. The adapted system parameters such as effective bulk modulus and viscous friction coefficient can be used for monitoring failures in the EHA system which has potential applications in the industrial fields. Not only the accuracy of adapted system parameters but also the improved performance and robustness in a given reference position of the cylinder are verified by computer simulation using AMESim software.

Design of RFNN Controller for high performance Control of SynRM Drive (SynRM 드라이브의 고성능 제어를 위한 RFNN 제어기 설계)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.33-43
    • /
    • 2011
  • Since the fuzzy neural network(FNN) is universal approximators, the development of FNN control systems have also grown rapidly to deal with non-linearities and uncertainties. However, the major drawback of the existing FNNs is that their processor is limited to static problems due to their feedforward network structure. This paper proposes the recurrent FNN(RFNN) for high performance and robust control of SynRM. RFNN is applied to speed controller for SynRM drive and model reference adaptive fuzzy controller(MFC) that combine adaptive fuzzy learning controller(AFLC) and fuzzy logic control(FLC), is applied to current controller. Also, this paper proposes speed estimation algorithm using artificial neural network(ANN). The proposed method is analyzed and compared to conventional PI and FNN controller in various operating condition such as parameter variation, steady and transient states etc.

Robust adaptive control by single parameter adaptation and the stability analysis (단일계수적응을 통한 강건한 적응제어시의 설계및 안정성 해석)

  • 오준호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.331-338
    • /
    • 1990
  • In adaptive control, the lack of persistent and rich excitation causes the estimated parameters to drift, which degrade the performance of the system and may introduces instability to the system in a stochastic environment. To solve the problem of the parameter drift, the concept of single parameter adaptation is presented. For the parameter identification, a priori error is directly used for adaptation error. The structure of the controller is based upon the minimum variance control technique. The stability and robustness analysis is carried out by the sector stability theorem for the second order system. The computer simulation is performed to justify the theoretical analysis for the various cases.

Model Reference Adaptive Control of the Pneumatic System with Load Variation (부하 변동 공압계의 모델 기준 적응제어)

  • Oh, Hyeon-il;Kim, In-soo;Kim, Gi-bum
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.57-64
    • /
    • 2015
  • In this paper, a model reference adaptive control (MRAC) scheme is applied for the precise and robust motion control of a pneumatic system with load variation. The reference model for MRAC is designed systematically using linear quadratic Gaussian control with loop transfer recovery (LQG/LTR). The sigmoid function of inverse velocity is used to compensate for the nonlinear friction force between the sliding parts. The experimental results show that MRAC effectively overcame the limit of the PID controller when there was unknown disturbance, including abrupt load variation and model uncertainty in the pneumatic control system.

A Study on Trajectory Tracking of Field Robot using Adpative Control (적응제어 기법을 이용한 필드 로봇의 궤적 추종에 관한 연구)

  • 서우석;김승수;양순용;이병룡;안경관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.496-499
    • /
    • 1997
  • Field robot represented by excavator can be applied for various kinds of working in manufacturing, construction, agriculture etc. because of the flexibility of its multi-joint mechanism and the high power of hydraulic actuators. In general, the dynamics of field robot have strong coupling, various kinds of non-linearity, and time-varying parameters according to working conditions. Therefore, it is very difficult to describe the system well, and design controller systematically based on its model. This paper established the mathematical model of field robot driven by electro-hydraulic servomechanism and constructed the adaptive control system robust to external load variations. The proposed control system for the field robot was evaluated by the computer simulation and the performance results of trajectory tracking were compared with that of PID control system.

  • PDF