• Title/Summary/Keyword: Adaptive Remeshing

Search Result 27, Processing Time 0.026 seconds

Remeshing techniques for r-adaptive and combined h/r-adaptive analysis with application to 2D/3D crack propagation

  • Askes, H.;Sluys, L.J.;de Jong, B.B.C.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.475-490
    • /
    • 2001
  • Remeshing strategies are formulated for r-adaptive and h/r-adaptive analysis of crack propagation. The relocation of the nodes, which typifies r-adaptivity, is a very cheap method to optimise a given discretisation since the element connectivity remains unaltered. However, the applicability is limited. To further improve the finite element mesh, a combined h/r-adaptive method is proposed in which h-adaptivity is applied whenever r-adaptivity is not capable of further improving the discretisation. Two and three-dimensional examples are presented. It is shown that the r-adaptive approach can optimise a discretisation at minimal computational costs. Further, the combined h/r-adaptive approach improves the performance of a fully r-adaptive technique while the number of h-remeshings is reduced compared to a fully h-adaptive technique.

Adaptive Mesh Generation in Large Deformation Analysis of Shell Structures with Advancing Front Method (Advancing Front Method를 이용한 대변형 쉘 구조물의 적응적 유한요소 자동생성법)

  • 장창두;정진우;문성춘
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.447-455
    • /
    • 1999
  • An adaptive mesh generation scheme is developed for effective non-linear analysis of the shell structures under large deformation. In particular, based on a posteriori error estimation, remeshing method on each load step is of primary interest here. An advancing front method, called paving method, is adopted for remeshing. It can be known that the adaptive mesh generation using contours of spacing values obtained from stress errors has an advantage in the adaptive analysis of the shell structures.

  • PDF

An Effective mesh smoothing technique for the mesh constructed by the mesh compression technique (격자압축을 이용해 구성된 격자의 효과적인 격자유연화 방법)

  • 홍진태;이석렬;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.331-334
    • /
    • 2003
  • In the finite element simulation of hot forging processes using hexahedron, remeshing of a flash is very difficult. The mesh compression method is a remeshing technique to construct an effective hexahedral mesh. However, because mesh is distorted during the compression procedure or the mesh compression method, mesh smoothing is necessary to improve the mesh Qualify. in this study, several geometric mesh smoothing techniques and a matrix norm optimization technique are applied and compared which is more adaptive to the mesh compression method.

  • PDF

J-integral calculation by domain integral technique using adaptive finite element method

  • Phongthanapanich, Sutthisak;Potjananapasiri, Kobsak;Dechaumphai, Pramote
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.461-477
    • /
    • 2008
  • An adaptive finite element method for analyzing two-dimensional and axisymmetric nonlinear elastic fracture mechanics problems with cracks is presented. The J-integral is used as a parameter to characterize the severity of stresses and deformation near crack tips. The domain integral technique, for which all relevant quantities are integrated over any arbitrary element areas around the crack tips, is utilized as the J-integral solution scheme with 9-node degenerated crack tip elements. The solution accuracy is further improved by incorporating an error estimation procedure onto a remeshing algorithm with a solution mapping scheme to resume the analysis at a particular load level after the adaptive remeshing technique has been applied. Several benchmark problems are analyzed to evaluate the efficiency of the combined domain integral technique and the adaptive finite element method.

Adaptive finite elements by Delaunay triangulation for fracture analysis of cracks

  • Dechaumphai, Pramote;Phongthanapanich, Sutthisak;Bhandhubanyong, Paritud
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.563-578
    • /
    • 2003
  • Delaunay triangulation is combined with an adaptive finite element method for analysis of two-dimensional crack propagation problems. The content includes detailed descriptions of the proposed procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique. The adaptive remeshing technique generates small elements around the crack tips and large elements in the other regions. Three examples for predicting the stress intensity factors of a center cracked plate, a compact tension specimen, a single edge cracked plate under mixed-mode loading, and an example for simulating crack growth behavior in a single edge cracked plate with holes, are used to evaluate the effectiveness of the procedure. These examples demonstrate that the proposed procedure can improve solution accuracy as well as reduce total number of unknowns and computational time.

A meshfree method based on adaptive refinement method and its application for deformation analysis (변형해석을 위한 적응적 세분화방법에 기초한 무요소법)

  • Han, Kyu-Taek
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • The finite element method(FEM) presents some limitations when the mesh becomes highly distorted. For analysis of metal forming processes with large deformation, the conventional finite element method usually requires several remeshing operations due to severe mesh distortion. The new computational method developed in the recent years, usually designated by meshfree method, offers an attractive approach to avoid those time-consuming remeshing efforts. This new method uses a set of points to represent the problem domain with no need of an additional mesh. Also this new generation of computational method provides a higher rate of convergence than that of the conventional finite element methods. One of the promising applications of meshfree methods is the adaptive refinement for problems having multi-scale nature. In this study, an adaptive node generation procedure is proposed and also to illustrate the efficiency of proposed method, several numerical examples are presented.

  • PDF

Two-Dimensional Adaptive Mesh Generation Algorithm and its Application with Higher-Order Compressible Flow Solver

  • Phongthanapanich, Sutthisak;Dechaumphai, Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2190-2203
    • /
    • 2004
  • A combined procedure for two-dimensional Delaunay mesh generation algorithm and an adaptive remeshing technique with higher-order compressible flow solver is presented. A pseudo-code procedure is described for the adaptive remeshing technique. The flux-difference splitting scheme with a modified multidimensional dissipation for high-speed compressible flow analysis on unstructured meshes is proposed. The scheme eliminates nonphysical flow solutions such as the spurious bump of the carbuncle phenomenon observed from the bow shock of the flow over a blunt body and the oscillation in the odd-even grid perturbation in a straight duct for the Quirk's odd-even decoupling test. The proposed scheme is further extended to achieve higher-order spatial and temporal solution accuracy. The performance of the combined procedure is evaluated on unstructured triangular meshes by solving several steady-state and transient high-speed compressible flow problems.

A Three-Dimensional Finite Element Analysis of Hot Extrusion through Square Dies by automatic remeshing Technique with modular concept (자동 단위체 격자재구성법을 이용한 열간 평금형압출의 3차원 유한요소해석)

  • 강연식;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.64-73
    • /
    • 1994
  • An updated Lagrangian finite element analysis with automatic remeshing scheme is applied to the three-dimensional hot extrusion through landless square dies. In the remeshing procedure, it is very difficult that the meshes are generated automatically with consideration of physical characteristics. In the presented study, the mesh generation is accomplished by modular concept. The generated meshes by modular concept have advantages, especially for three-dimensional problems, such as economized computational time and consideration of physical characteristic. In the problem, orifice shapes of square die are divided into two for the extrusion of solid sections. The orifice adaptive modules are developed for each type and the numerical examples are carried out for each type.

  • PDF

A Study on the Efficient Meshfree Method Using Adaptive Refinement Analysis (적응적 세분화기법을 이용한 효율적 무요소법에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.50-56
    • /
    • 2010
  • Meshfree methods show many advantages over finite element method(FEM) in the class of problems for which the remeshing process is inevitable when the conventional FEM used, such as propagating crack problems, large deformation and so on. One of the promising applications of meshfree methods is the adaptive refinement for problems having multi-scale nature. In this study, an adaptive node generation procedure is proposed and several numerical examples are also presented to illustrate the efficiency of proposed method.

An Effective Mesh Smoothing Technique for the Mesh Constructed by the Mesh Compression Technique (격자압축법을 이용하여 구성된 격자의 효과적인 격자유연화 방법)

  • 홍진태;이석렬;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.340-347
    • /
    • 2003
  • In the rigid-plastic finite element simulation of hot forging processes using hexahedral mesh, remeshing of a flash is important for design and control of the process to obtain desirable defect-free products. The mesh compression method is a remeshing technique which enables the construction of an effective hexahedral mesh in the flash. However, because the mesh is distorted during the compression procedure of the mesh compression method, when it is used in resuming the analysis, it causes discretization error and decreases the conversance rate. Therefore, mesh smoothing is necessary to improve the mesh quality. In this study, several geometric mesh smoothing techniques and optimization techniques are introduced and modified to improve mesh quality. Then, the most adaptive technique is recommended for the mesh compression method.