• Title/Summary/Keyword: Adaptive Regularization

Search Result 43, Processing Time 0.022 seconds

Regularized Surface Smoothing for Enhancement of Range Data (거리영상 개선을 위한 정칙화 기반 표면 평활화기술)

  • 기현종;신정호;백준기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1903-1906
    • /
    • 2003
  • This paper proposes an adaptive regularized noise smoothing algorithm for range image using the area decreasing flow method, which can preserve meaningful edges during the smoothing process. Although the area decreasing flow method can easily smooth Gaussian noise, it has two problems; ⅰ) it is not easy to remove impulsive noise from observed range data, and ⅱ) it is also difficult to remove noise near edge when the adaptive regularization is used. In the paper, therefore, the second smoothness constraint is addtionally incorporated into the existing regularization algorithm, which minimizes the difference between the median filtered data and the estimated data. As a result, the Proposed algorithm can effectively remove the noise of dense range data with edge preserving.

  • PDF

Disparity Estimation using a Region-Dividing Technique and Edge-preserving Regularization (영역 분할 기법과 경계 보존 변이 평활화를 이용한 스테레오 영상의 변이 추정)

  • 김한성;손광훈
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.25-32
    • /
    • 2004
  • We propose a hierarchical disparity estimation algorithm with edge-preserving energy-based regularization. Initial disparity vectors are obtained from downsampled stereo images using a feature-based region-dividing disparity estimation technique. Dense disparities are estimated from these initial vectors with shape-adaptive windows in full resolution images. Finally, the vector fields are regularized with the minimization of the energy functional which considers both fidelity and smoothness of the fields. The first two steps provide highly reliable disparity vectors, so that local minimum problem can be avoided in regularization step. The proposed algorithm generates accurate disparity map which is smooth inside objects while preserving its discontinuities in boundaries. Experimental results are presented to illustrate the capabilities of the proposed disparity estimation technique.

New Image Processing Methodology for Noisy-Blurred Images (잡음으로 훼손된 영상에 대한 새로운 영상처리방법론)

  • Jeon, Woo-Sang;Han, Kun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.965-970
    • /
    • 2010
  • In this paper, a iterative image restoration method is proposed to restore for noisy-blurred images. In conventional method, regularization is usually applied to all over the without considering the local characteristics of image. As a result, ringing artifacts appear in edge regions and the noise amplification is introduced in flat regions. To solvethis problem we proposed an adaptive regularization iterative restoration using directional regularization operator considering edges in four directions and the regularization operator with no direction for flat regions. We verified that the proposed methods showed better results in the suppression of the noise amplification in flat regions, and introduced less ringing artifacts in edge regions. As a result it showed visually better image and improved better ISNR further than the conventional methods.

A time delay estimation method using canonical correlation analysis and log-sum regularization (로그-합 규준화와 정준형 상관 분석을 이용한 시간 지연 추정에 관한 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Gook;Lee, Seokjin;Cheong, MyoungJun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.279-284
    • /
    • 2017
  • The localization of sources has a numerous number of applications. To estimate the position of sources, the relative time delay between two or more received signals for the direct signal must be determined. Although the GCC (Generalized Cross-Correlation) method is the most popular technique, an approach based on CCA (Canonical Correlation Analysis) was also proposed for the TDE (Time Delay Estimation). In this paper, we propose a new adaptive algorithm based on CCA in order to utilized the sparsity in the eigenvector of CCA based time delay estimator. The proposed algorithm uses the eigenvector corresponding to the maximum eigenvalue with log-sum regularization in order to utilize the sparsity in the eigenvector. We have performed simulations for several SNR(signal to noise ratio)s, showing that the new CCA based algorithm can estimate the time delays more accurately than the conventional CCA and GCC based TDE algorithms.

Image Processing Considering Directional Extraction by Multi-Resolution Signal Analysis. (다해상도 신호분석에 의한 방향성 추출을 통한 영상처리)

  • Jeon, Woo-Sang;Kim, Young-Gil;Han, Kun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3928-3934
    • /
    • 2010
  • To restore image degraded by motion blur and additive noise, In conventional method, regularization is usually applied to all over the image without considering the local characteristics of image. As a result, ringing artifacts appear in edge regions and the noise amplification is introduced in flat regions. To solve this problem we propose an adaptive regularization iterative restoration using wavelet directional considering edges and the regularization operator with no direction for flat regions. We verified that the proposed method showed results in the suppression of the noise amplification in flat regions, and introduced less ringing artifacts in edge regions.

Regularization Parameter Determination for Optical Flow Estimation using L-curve (L-curve를 이용한 광학 흐름 추정을 위한 정규화 매개변수 결정)

  • Kim, Jong-Dae;Kim, Jong-Won
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.241-248
    • /
    • 2007
  • An L-curve corner detection method is proposed for the determination of the regularization parameter in optical flow estimation. The method locates the positive peak whose curvature difference from the just right-hand negative valley is the maximum in the curvature plot of the L-curve. while the existing curvature-method simply finds the maximum in the plot. Experimental results show that RMSE of the estimated optical flow is greater only by 0.02 pixels-per-frame than the least in the average sense. The proposed method is also compared with an existing curvature-method and the adaptive pruning method, resulting in the optical flow estimation closest to the least RMSE.

Image Restoration Considering the Edge and Flat Region (윤곽과 평면 영역을 고려한 영상복원)

  • 전우상;이태홍
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.399-404
    • /
    • 2002
  • To restore image degraded by motion blur and additive noise, it is very difficult. In conventional restoration method, regularization is usually applied to all over the image without considering the local characteristics of image. As a result, ringing artifacts appear in edge regions and the noise amplification is introduced in flat regions. To solve this problem we propose an adaptive restoration method using directional regularization operator considering edges and the regularization operator with no direction for flat regions. We verified that the proposed method showed better results in the resolution. As a result it showed visually better image and improved better ISNR further than the conventional methods.

  • PDF

Bond strength prediction of spliced GFRP bars in concrete beams using soft computing methods

  • Shahri, Saeed Farahi;Mousavi, Seyed Roohollah
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.305-317
    • /
    • 2021
  • The bond between the concrete and bar is a main factor affecting the performance of the reinforced concrete (RC) members, and since the steel corrosion reduces the bond strength, studying the bond behavior of concrete and GFRP bars is quite necessary. In this research, a database including 112 concrete beam test specimens reinforced with spliced GFRP bars in the splitting failure mode has been collected and used to estimate the concrete-GFRP bar bond strength. This paper aims to accurately estimate the bond strength of spliced GFRP bars in concrete beams by applying three soft computing models including multivariate adaptive regression spline (MARS), Kriging, and M5 model tree. Since the selection of regularization parameters greatly affects the fitting of MARS, Kriging, and M5 models, the regularization parameters have been so optimized as to maximize the training data convergence coefficient. Three hybrid model coupling soft computing methods and genetic algorithm is proposed to automatically perform the trial and error process for finding appropriate modeling regularization parameters. Results have shown that proposed models have significantly increased the prediction accuracy compared to previous models. The proposed MARS, Kriging, and M5 models have improved the convergence coefficient by about 65, 63 and 49%, respectively, compared to the best previous model.

Adaptive lasso in sparse vector autoregressive models (Adaptive lasso를 이용한 희박벡터자기회귀모형에서의 변수 선택)

  • Lee, Sl Gi;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.27-39
    • /
    • 2016
  • This paper considers variable selection in the sparse vector autoregressive (sVAR) model where sparsity comes from setting small coefficients to exact zeros. In the estimation perspective, Davis et al. (2015) showed that the lasso type of regularization method is successful because it provides a simultaneous variable selection and parameter estimation even for time series data. However, their simulations study reports that the regular lasso overestimates the number of non-zero coefficients, hence its finite sample performance needs improvements. In this article, we show that the adaptive lasso significantly improves the performance where the adaptive lasso finds the sparsity patterns superior to the regular lasso. Some tuning parameter selections in the adaptive lasso are also discussed from the simulations study.

A MEMORY EFFICIENT INCREMENTAL GRADIENT METHOD FOR REGULARIZED MINIMIZATION

  • Yun, Sangwoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.589-600
    • /
    • 2016
  • In this paper, we propose a new incremental gradient method for solving a regularized minimization problem whose objective is the sum of m smooth functions and a (possibly nonsmooth) convex function. This method uses an adaptive stepsize. Recently proposed incremental gradient methods for a regularized minimization problem need O(mn) storage, where n is the number of variables. This is the drawback of them. But, the proposed new incremental gradient method requires only O(n) storage.