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A MEMORY EFFICIENT INCREMENTAL GRADIENT

METHOD FOR REGULARIZED MINIMIZATION

Sangwoon Yun

Abstract. In this paper, we propose a new incremental gradient method
for solving a regularized minimization problem whose objective is the
sum of m smooth functions and a (possibly nonsmooth) convex function.
This method uses an adaptive stepsize. Recently proposed incremental
gradient methods for a regularized minimization problem need O(mn)
storage, where n is the number of variables. This is the drawback of
them. But, the proposed new incremental gradient method requires only
O(n) storage.

1. Introduction

In this paper, we consider the regularized minimization problem whose form
is

(1) min
x∈ℜn

Fλ(x) := f(x) + λP (x),

where λ > 0, P : ℜn → (−∞,∞] is a proper, convex, lower semicontinuous
(lsc) function [20], and

(2) f(x) :=

m
∑

i=1

fi(x),

where each function fi is real-valued and smooth (i.e., continuously differen-
tiable) on an open subset of ℜn containing domP = {x | P (x) < ∞}.

The minimization problem (1) we consider arises in many applications such
as (supervised) learning [7, 12, 27], regression [17, 23], neural network training
[11, 21, 29], and data mining/classification [5, 15, 22, 28]. For the ℓ1-regularized
linear least squares problem [6, 23],

fi(x) =
1

2
(aTi x− bi)

2, P (x) = λ‖x‖1,
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where ai ∈ ℜn, bi ∈ ℜ, and λ > 0. In this problem, f can be interpreted
as a linear model under Gaussian errors on b. For the ℓ1-regularized logistic
regression problem [15]:

(3) fi(x) =
1

m
log(1 + exp(−(aTi x1:n−1 + bixn)), P (x) = λ‖x1:n−1‖1,

where x1:n−1 = (x1, . . . , xn−1)
T , ai = bizi with (zi, bi) ∈ ℜn−1 × {−1, 1}, and

λ > 0. As is done in compressed sensing, lasso, and group lasso, a nonsmooth
regularization term P (x), such as the 1-norm, is added to avoid over-fitting
and/or induces a sparse representation; see [6, 8, 9, 23, 25, 31] and references
therein. Another important problem of the form (1) is L2-loss support vector
regression [12]:

fi(x) = max
(

|aTi x− bi| − ǫ, 0
)

, P (x) =
λ

2
‖x‖22,

where ai ∈ ℜn, bi ∈ ℜ, and ǫ, λ > 0. Note that ai and bi are a given set of
(observed or training) data.

In many applications, the number of functions m is large, say, more than
104. In this case, traditional gradient based algorithms would be inefficient
since they require evaluating ∇fi(x) for all i before x is updated. In contrast,
incremental gradient methods update x after ∇fi(x) is evaluated for only one
or a few i. In the unconstrained case, i.e., P ≡ 0, the classical incremental
gradient method has the following basic form

(4) xk+1 = xk + αk∇fik(x
k), k = 0, 1, . . . ,

where ik is chosen to cycle through 1, . . . ,m (i.e., i0 = 1, i1 = 2, . . . , im−1 =
m, im = 1, . . . ) and αk > 0. To guarantee global convergence of them, the
stepsize requires to diminish to zero. This can lead to slow convergence; see
[1, 10, 16, 18, 29, 30]. Moreover, its extension to the nonsmooth regularized
minimization problem is hard.

Recently, Tseng and Yun [26] proposed incremental gradient methods to
solve the problem (1), i.e., the (nonsmooth) regularized minimization problem.
The method proposed in [26] has the following form

gk =

m
∑

i=1

∇fi(x
τk
i ),(5)

dk = argmin
d∈ℜn

{

〈gk, d〉+
1

2
〈d,Hkd〉+ λP (xk + d)

}

,(6)

xk+1 = xk + αkd
k,(7)

where τki ≤ k for i = 1, . . . ,m, Hk ≻ 0n, αk ∈ (0, 1], and x0, x−1, . . . in domP

are given. In particular, when there is no regularization term, i.e., P ≡ 0,
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(6)–(7) with Hk = I and αk = α, and

(8) τki =

{

k if i = (k mod m) + 1;

τk−1
i otherwise,

1 ≤ i ≤ m, k ≥ m,

reduces to the incremental gradient method proposed by Blatt et al. [4] which
has the form

gk = gk−1 +∇fik(x
k)−∇fik(x

k−m),

xk+1 = xk − αkg
k.

The algorithm (5)–(7) is a more general method and the gradient components
can be partially asynchronously updated [3, 24]. Hence the incremental gradi-
ent method in [26] has several advantages over the classical incremental gradient
method (4). But, this incremental gradient method requires O(mn) storage,
which is expensive when m is large. This is the main drawback of it.

In this paper, we propose a new incremental gradient (IG) method that,
instead of storing a past gradient of fi for each i, uses a running average of all
past gradients. This has the advantage of using only O(n) storage. Specifically,
the proposed IG method replaces (5) by

(9) gk =
k

k + 1
gk−1 +

m

k + 1
∇fik(x

k) with ik = (k mod m) + 1,

with g−1 = 0. This gradient update is also used in a subgradient averaging
method of Nesterov [19, Section 6] and its extension by Xiao [31] (also see [13])
for convex stochastic optimization of the form (1) with f being the expectation
of convex functions parametrized by a random variable. In contrast to the IG
method proposed in [26], the proposed IG method can choose ik randomly.

In our notation, ℜn denotes the space of n-dimensional real column vectors,
T denotes transpose. For any x ∈ ℜn, xj denotes the jth component of x, and

‖x‖p =
(

∑n

j=1 |xj |
p
)1/p

for 1 ≤ p < ∞ and ‖x‖∞ = maxj |xj |. For simplicity,

we write ‖x‖ = ‖x‖2. For any x, y ∈ ℜn, 〈x, y〉 = xT y (so ‖x‖ =
√

〈x, x〉. For
n× n real symmetric matrices A,B, we write A � B (respectively, A ≻ B) to
mean that A − B is positive semidefinite (respectively, positive definite). We
denote by I the identity matrix and by 0n the n × n matrix of zero entries.
Unless otherwise specified, {xk} denotes the sequence x0, x1, . . . .

2. Memory efficient incremental gradient method

In this section we describe the proposed IG method in which gk is updated
by a weighted average of past component gradients (9) and give some lemmas
that will be used in our convergence analysis, i.e., Theorem 3.1.

We make the following standard assumptions about functions f1, . . . , fm:

Assumption 1.

(10) ‖∇fi(y)−∇fi(z)‖ ≤ Li‖y − z‖ ∀y, z ∈ domP,



592 S. YUN

for some Li ≥ 0, i = 1, . . . ,m. Let L =
∑m

i=1 Li.

The following assumptions are required for global convergence analysis of
the proposed method.

Assumption 2. σI � Hk for all k, where 0 < σ.

Convergence of the proposed method requires gk −∇f(xk) → 0. To ensure
this, the stepsize αk needs to be chosen carefully.

Assumption 3. (a)
∞
∑

k=0

αk = ∞.

(b) lim
ℓ→∞

ℓ
∑

j=0

j + 1

ℓ + 1
δj = 0, where δj := max

i=0,1,...,m
‖xk+i − xk+m‖

∣

∣

∣

∣

k=jm−1

(x−1 = x0).

Assumption 3(b) is satisfied by, for example, the adaptive stepsize rule

(11) αk+i = min

{

1,
φ(j + 1)

(j + 1)‖dk+i‖

}∣

∣

∣

∣

k=jm−1

, 0 ≤ i < m, j = 0, 1, . . . ,

where φ : [1,∞) → (0,∞) is continuous, decreasing, and limt→∞ φ(t) = 0.

This is because, by (11), δj ≤ m
φ(j+1)
j+1 . Also, for any ǫ > 0, there exists j̄ such

that φ(j + 1) ≤ ǫ for all j > j̄. Thus

ℓ
∑

j=0

j + 1

ℓ+ 1
δj ≤ m

ℓ
∑

j=0

φ(j + 1)

ℓ+ 1
≤ m





j̄
∑

j=0

φ(j + 1)

ℓ + 1
+

ℓ− j̄

ℓ+ 1
ǫ



 → mǫ as ℓ → ∞.

If in addition
∫∞

1
φ(t)
t
dt = ∞ and {dk} is bounded (such as when domP is

bounded), then Assumption 3(a) holds as well. Examples of such φ include
φ(t) = 1

ln t
and φ(t) = 1

ln t ln(ln t) .

Now, we formally describe our proposed method below.

Algorithm 1 Memory Efficient Incremental Gradient Method

Choose x0 ∈ domP and set g−1 = 0. For k = 0, 1, 2, . . . , generate xk+1 from
xk according to the following iteration:

Step 1: Choose Hk ≻ 0n.
Step 2: Solve

dk = argmin
d∈ℜn

{

〈gk, d〉+
1

2
〈d,Hkd〉+ λP (xk + d)

}

with gk = k
k+1g

k−1 + m
k+1∇fik(x

k) with ik = (k mod m) + 1.

Step 3: Set xk+1 = xk + αkd
k with αk ∈ (0, 1].
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In what follows, for any x ∈ domP , g ∈ ℜn, and H ≻ 0n, we denote

d
g
H(x) := argmin

d

{

〈g, d〉+
1

2
〈d,Hd〉+ λP (x + d)

}

.

Thus dk=d
gk

Hk (x
k). ForH diagonal and P separable piecewise-linear/quadratic,

d
g
H(x) is computable in closed form. Some examples are given below.

1. For P (x) = ‖x‖1, d
g
H(x)j = −mid{

gj−λ

Hjj
, xj ,

gj+λ

Hjj
}.

2. For P (x) = ‖x‖1 +
ω
2 ‖x‖

2 (ω > 0) [9],

d
g
H(x)j = −mid

{

gj − λ+ λω

Hjj + λω
, xj ,

gj + λ+ λω

Hjj + λω

}

.

3. For P (x) = ‖x‖1 + ιB(x), where ιB(x) is the indicator function of
B = {x | ℓ ≤ x ≤ u} with ℓ ≤ u (possibly with −∞ or ∞ components),

d
g
H(x)j = −mid

{

ℓj − xj ,−mid{
gj − λ

Hjj

, xj ,
gj + λ

Hjj

}, uj − xj

}

,

where mid{a, b, c} denotes the median (mid-point) of a, b, c.
We have the following lemma, whose proof is identical to that of [25, Eq.

(8)] and is thus omitted.

Lemma 2.1. For any x ∈ domP , g ∈ ℜn, and H ≻ 0n, let d = d
g
H(x). Then

〈g, d〉+ λP (x + d)− λP (x) ≤ −〈d,Hd〉.

We say that x ∈ ℜn is a stationary point of Fλ if x ∈ domP and Fλ
′(x; d) ≥ 0

for all d ∈ ℜn. The following result from [25, Lemma 2] characterizes station-

arity in terms of d
∇f(x)
H (x).

Lemma 2.2. For any H ≻ 0n, an x ∈ domP is a stationary point of Fλ if

and only if d
∇f(x)
H (x) = 0.

3. Convergence analysis

In this section, we analyze convergence properties of our proposed IG method
under Assumptions 1–3. The proof uses Lemmas 2.1 and 2.2.

Theorem 3.1. Let {xk}, {dk}, {Hk}, {αk} be sequences generated by Algo-

rithm 1 under Assumptions 1, 2 and 3. Then the following results hold.

(a) {‖xk+1 − xk‖} → 0 and {‖∇f(xk)− gk‖} → 0.
(b) lim infk→∞ ‖dk‖ = 0.
(c) If {xk} is bounded, then there exists a cluster point of {xk} that is a

stationary point of (1).

Proof. (a) Assumption 3(b) implies {δj} → 0, so {‖xk − xk+1‖} → 0. For each
j ∈ {0, 1, . . .}, letting k = jm− 1, we have ik+1 = 1, ik+2 = 2, . . . , ik+m = m,
and hence

gk+m =
k +m

k +m+ 1
gk+m−1 +

m

k +m+ 1
∇fm(xk+m)
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=
k +m

k +m+ 1

(

k +m− 1

k +m
gk+m−2 +

m

k +m
∇fm−1(x

k+m−1)

)

+
m

k +m+ 1
∇fm(xk+m)

=
k +m− 1

k +m+ 1
gk+m−2 +

m

k +m+ 1
∇fm−1(x

k+m−1)

+
m

k +m+ 1
∇fm(xk+m)

=
k + 1

k +m+ 1
gk +

m

k +m+ 1

m
∑

i=1

∇fi(x
k+i)

=
j

j + 1
gk +

1

j + 1

m
∑

i=1

∇fi(x
k+i).

Thus, upon letting

ej := ‖gk −∇f(xk)‖
∣

∣

k=jm−1

and using k = jm− 1, we have

ej+1 =
∥

∥gk+m −∇f(xk+m)
∥

∥

=

∥

∥

∥

∥

∥

j

j + 1
(gk −∇f(xk+m)) +

1

j + 1

m
∑

i=1

(∇fi(x
k+i)−∇fi(x

k+m))

∥

∥

∥

∥

∥

≤
j

j + 1

∥

∥gk −∇f(xk+m)
∥

∥+
1

j + 1

m
∑

i=1

‖∇fi(x
k+i)−∇fi(x

k+m)‖

≤
j

j + 1
(‖gk −∇f(xk)‖+ L‖xk − xk+m‖) +

1

j + 1

m
∑

i=1

Li‖x
k+i − xk+m‖

≤
j

j + 1
(ej + Lδj) +

1

j + 1
Lδj

=
j

j + 1
ej + Lδj,

where the second inequality uses (10) and Assumption 1. Propagating this
recursion backwards yields

ej+1 ≤ L

(

1

j + 1
δ0 +

2

j + 1
δ1 + · · ·+

j

j + 1
δj−1 + δj

)

.

Under Assumption 3(b), the right-hand side tends to zero as j → ∞. This
shows that {ej} → 0.

By replacing “k = jm− 1” in the above argument with “k = jm− 1 + ν”,
where ν ∈ {1, . . . ,m− 1}, we obtain

‖xk − xk+m‖ ≤ ‖xk − xk+m−ν‖+ ‖xk+m−ν − xk+m‖ ≤ δj + 2δj+1
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and similarly ‖xk+i − xk+m‖ ≤ δj + 2δj+1, so a similar argument yields

ej+1 ≤
j + ν

m

j + 1 + ν
m

ej + L(δj + 2δj+1) ≤
j + 1

j + 2
ej + L(δj + 2δj+1)

and then {ej} → 0. Since the choice of ν was arbitrary, this proves that
{‖∇f(xk)− gk‖} → 0.

(b) Let

∆k = 〈gk, dk〉+ λP (xk + dk)− λP (xk).

Then, for each k ∈ {0, 1, . . .},

Fλ(x
k+1)− Fλ(x

k) = Fλ(x
k + αkd

k)− Fλ(x
k)

= f(xk + αdk)− f(xk) + λP (xk + αdk)− λP (xk)

≤ α〈∇f(xk), dk〉+ α2L

2
‖dk‖2 + α(λP (xk + dk)− λP (xk))

≤ αk〈∇f(xk)− gk, dk〉+ α2
k

L

2
‖dk‖2 + αk∆k

≤ αk‖∇f(xk)− gk‖‖dk‖+ α2
k

L

2
‖dk‖2 − αkσ‖d

k‖2

= −αk

(

σ‖dk‖ − ‖∇f(xk)− gk‖ −
L

2
‖xk+1 − xk‖

)

‖dk‖,(12)

where the first inequality uses the convexity of P , α ∈ (0, 1], and the Lipschitz
continuity of ∇f on domP [2, page 667] and the third inequality uses ∆k ≤
−〈dk, Hkdk〉 ≤ −σ‖dk‖2 (see Lemma 2.1 and Assumption 2).

We argue lim infk→∞ ‖dk‖ = 0 by contradiction. Suppose the contrary, so
that there exists an ǫ > 0 such that ‖dk‖ ≥ ǫ for all k. By (a), we have
{‖∇f(xk)−gk‖} → 0 and {‖xk+1−xk‖} → 0 and hence there exists an integer
k̄ such that

‖∇f(xk)− gk‖ ≤
1

4
σ‖dk‖,

L

2
‖xk+1 − xk‖ ≤

1

4
σ‖dk‖ ∀k ≥ k̄.

Then (12) yields

Fλ(x
k+1)− Fλ(x

k) ≤ −αkσ
‖dk‖2

2
≤ −αkσ

ǫ2

2
∀k ≥ k̄,

so that

lim
k→∞

Fλ(x
k+1) ≤ Fλ(x

k̄)−

∞
∑

k=k̄

αkσ
ǫ2

2
= −∞,

where the equality is due to Assumption 3(a). This contradicts inf Fλ > −∞.
(c) Suppose {xk} is bounded. By (b), {dk}k∈K → 0 for someK ⊆ {0, 1, . . .}.

Since {‖∇f(xk)−gk‖} → 0, for every limit point x̄ of a convergent subsequence
{xk}k∈K̃⊆K , {gk}k∈K̃ → ∇f(x̄).

Then (6) implies that, for any x ∈ domP , we have

〈gk, dk〉+
1

2
〈dk, Hkdk〉+λP (xk+dk)≤〈gk, x−xk〉+

1

2
〈x−xk, Hk(x−xk)〉+λP (x)
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for all k ∈ K̃, so the lsc property of P yields in the limit that

λP (x̄) ≤ 〈∇f(x̄), x− x̄〉+
1

2
〈x− x̄, H̄(x− x̄)〉+ λP (x) ∀x ∈ domP,

where H̄ is any cluster point of {Hk}k∈K̃ . Since Hk � σI for all k ∈ K̃,

H̄ ≻ 0n. This shows that dH̄(x̄) = 0 so that, by Lemma 2.2, x̄ is a stationary
point of (1). Hence every cluster point of {xk}k∈K is a stationary point of
(1). �

4. Numerical experiments

In this section we support Theorem 3.1 by numerical experiments. We apply
our proposed method to solve the ℓ1-regularized logistic regression problem (3)
on randomly generated data. Note that we test our proposed method only on
small size problems to show it works well.

Here, we assume that there are j, k ∈ {1, . . . ,m} such that bj = 1 and
bk = −1. If we take x0 = 0, λ‖x1:n−1‖1 ≤ log 2 for all x with x ∈ X0 := {x |
Fλ(x) ≤ Fλ(x

0)} since log(1+exp(−(aTi x1:n−1+bixn))) > 0 for all x ∈ ℜn and

i = 1, . . . ,m. Hence |xi| ≤
log 2
λ

for i = 1, . . . , n−1. Also, since λ‖x1:n−1‖1 ≥ 0,

log(1 + exp(−(aTi x1:n−1 + bixn))) ≤ m log 2 for all x ∈ X0 and i = 1, . . . ,m.
Hence, for each i, exp(−(aTi x1:n−1 + bixn)) ≤ 2m − 1. This together with the
assumption on the choice of b and the boundedness of x1:n−1 with x ∈ X0

implies that

(13) −m log 2−
log 2

λ
min
bj>0

‖ai‖1 ≤ xn ≤ m log 2 +
log 2

λ
min
bj<0

‖ai‖1.

Therefore X0 with x0 = 0 is bounded. Optimal solutions are contained in X0.
Hence we apply our proposed method to the following bounded ℓ1-regularized
logistic regression problem:

(14) min
x

m
∑

i=1

1

m
log(1 + exp(−(aTi x1:n−1 + bixn)) + λ‖x1:n−1‖1 + ιB(x),

where B =
{

x | |xi| ≤
log 2
λ

for i = 1, . . . , n− 1, xn satisfies (13)
}

. Since B is

bounded, this implies that Assumption 3 with (11) and φ(t) = 1
ln t

is satisfied.

Our proposed method is implemented as follows. We choose Hk = I. The
stepsize αk is chosen by the rule (11) with φ(t) = 1

ln t
.

We stop the algorithm when the relative error of the iterates satisfies the
following condition:

(15)
‖xk − xk−1‖

max{1, ‖xk‖}
≤ Tol,

where Tol is a moderately small tolerance.
All runs are performed on a Desktop with Intel Core i7-3770 CPU (3.40GHz)

and 8GB Memory, running 64-bit windows 8.1 and matlab (Version 8.3).
Throughout the experiments, we choose the initial iterate to be x0 = 0.
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Table 1. Test results with ten random data sets with m =
100 and n = 101 with Tol = 10−4.

λ = 0.0473272 λ = 0.0474351 λ = 0.0494608 λ = 0.0543597 λ = 0.0516248

iters 35508 44336 33911 53836 28049
obj 0.2393 0.2308 0.2365 0.2453 0.2586

λ = 0.0503979 λ = 0.0503678 λ = 0.0527553 λ = 0.0529956 λ = 0.0527555

iters 36393 35306 52595 28196 38182
obj 0.2402 0.2341 0.2369 0.2368 0.2313
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Figure 1. (a) Objective values versus epoch (one epoch is
m iterations). It shows that the objective values eventually
decrease. (b) Relative errors versus epoch. It shows that the
relative errors eventually converge to zero. (c) The differences
between the gradient of f at xk and the approximated gradi-
ent gk versus epoch. It shows that the differences eventually
converge to zero. (d) The norm of directions versus epoch. It
shows that the norm of directions also eventually converge to
zero. Note that these are numerical results when λ =
0.0473272.
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Table 1 reports the number of iterations and the final objective value for
the bounded ℓ1-regularized logistic regression problem (14) on ten randomly
generated data with size m = 100 and n = 101. As suggested in [14], each
randomly generated problem has an equal number of positive and negative data
points. Features of positive (negative) points are independent and identically
distributed, drawn from a normal distribution N (ξ, 1), where ξ is in turn drawn
from a uniform distribution on [0, 1]([−1, 0]). For each instance, we chose λ =
0.1λmax where λmax = 1

m
‖m

−

m

∑

bi=1 ai +
m+

m

∑

bi=−1 ai‖∞, m− is the number
of negative points, and m+ is the number of positive points.

Figure 1(a) shows that the objective values eventually decrease and Figure
1(b)-(d) show that the relative errors, the differences between the gradient of
f at xk and the approximated gradient gk, the norm of directions converge to
zero, respectively. Note that similar performance is observed in other randomly
generated data. Hence Figure 1 supports that Theorem 3.1 works well for the
bounded ℓ1-regularized logistic regression problem (14).

5. Conclusions and extensions

In this paper we have proposed the new incremental gradient method for
minimizing the sum of smooth functions and a (possibly nonsmooth) convex
function. The proposed method uses much less storage and so is a memory
efficient method.

Our adaptive stepsize rule (11) is somewhat complicated. Can a diminishing
stepsize which is used for classical incremental gradient methods or a constant
stepsize be used? These stepsize rules are much simple to use. Can Theorem
3.1(c) be strengthened to show that every cluster point of {xk} is stationary? In
this paper, we have tested our proposed method on small size problems only to
show Theorem 3.1 works well. Hence, it will be interested in the comprehensive
numerical study of the proposed method. These are some issues that need
further investigation.
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