• Title/Summary/Keyword: Adaptive Reconstruction

Search Result 178, Processing Time 0.029 seconds

Characterization of Deep Learning-Based and Hybrid Iterative Reconstruction for Image Quality Optimization at Computer Tomography Angiography (전산화단층촬영조영술에서 화질 최적화를 위한 딥러닝 기반 및 하이브리드 반복 재구성의 특성분석)

  • Pil-Hyun, Jeon;Chang-Lae, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • For optimal image quality of computer tomography angiography (CTA), different iodine concentrations and scan parameters were applied to quantitatively evaluate the image quality characteristics of filtered back projection (FBP), hybrid-iterative reconstruction (hybrid-IR), and deep learning reconstruction (DLR). A 320-row-detector CT scanner scanned a phantom with various iodine concentrations (1.2, 2.9, 4.9, 6.9, 10.4, 14.3, 18.4, and 25.9 mg/mL) located at the edge of a cylindrical water phantom with a diameter of 19 cm. Data obtained using each reconstruction technique was analyzed through noise, coefficient of variation (COV), and root mean square error (RMSE). As the iodine concentration increased, the CT number value increased, but the noise change did not show any special characteristics. COV decreased with increasing iodine concentration for FBP, adaptive iterative dose reduction (AIDR) 3D, and advanced intelligent clear-IQ engine (AiCE) at various tube voltages and tube currents. In addition, when the iodine concentration was low, there was a slight difference in COV between the reconstitution techniques, but there was little difference as the iodine concentration increased. AiCE showed the characteristic that RMSE decreased as the iodine concentration increased but rather increased after a specific concentration (4.9 mg/mL). Therefore, the user will have to consider the characteristics of scan parameters such as tube current and tube voltage as well as iodine concentration according to the reconstruction technique for optimal CTA image acquisition.

A Study on the Usefulness of Deep Learning Image Reconstruction with Radiation Dose Variation in MDCT (MDCT에서 선량 변화에 따른 딥러닝 재구성 기법의 유용성 연구)

  • Ga-Hyun, Kim;Ji-Soo, Kim;Chan-Deul, Kim;Joon-Pyo, Lee;Joo-Wan, Hong;Dong-Kyoon, Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.37-46
    • /
    • 2023
  • This study aims to evaluate the usefulness of Deep Learning Image Reconstruction (TrueFidelity, TF), the image quality of existing Filtered Back Projection (FBP) and Adaptive Statistical Iterative Reconstruction-Veo (ASIR-V) were compared. Noise, CNR, and SSIM were measured by obtaining images with doses fixed at 17.29 mGy and altered to 10.37 mGy, 12.10 mGy, 13.83 mGy, and 15.56 mGy in reconstruction techniques of FBP, ASIR-V 50%, and TF-H. TF-H has superior image quality compared to FBP and ASIR-V when the reconstruction technique change is given at 17.29 mGy. When dose changes were made, Noise, CNR, and SSIM were significantly different when comparing 10.37 mGy TF-H and FBP (p<0.05), and no significant difference when comparing 10.37 mGy TF-H and ASIR-V 50% (p>0.05). TF-H has a dose-reduction effect of 30%, as the highest dose of 15.56 mGy ASIR-V has the same image quality as the lowest dose of 10.37 mGy TF-H. Thus, Deep Learning Reconstruction techniques (TF) were able to reduce dose compared to Iterative Reconstruction techniques (ASIR-V) and Filtered Back Projection (FBP). Therefore, it is considered to reduce the exposure dose of patients.

Reconstruction of High Resolution Images by ARPS Motion Estimation and POCS Restoration (ARPS 움직임 추정과 POCS 복원을 동시에 이용하는 HR 영상 재구성)

  • Song, Hee-Keun;Kim, Yong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.288-296
    • /
    • 2009
  • In POCS (projection onto convex sets)-based reconstruction of HR (high resolution) image, the quality of reconstructed image is gradually improved through iterative motion estimation and image restoration. The amount of computation, however, increases because of the repeated inter-frame motion estimation. In this paper, an HR reconstruction algorithm is proposed where modified ARPS (adaptive rood pattern search) and POCS are simultaneously performed. In the modified ARPS, the motion estimates obtained from phase correlation or from the previous steps in POCS restoration are utilized as the initial reference in the motion estimation. Moreover, estimated motion is regularized with reference to the neighboring blocks' motion to enhance the reliability. Computer simulation results show that, when compared to conventional methods which are composed of full search block matching and POCS restoration, the proposed method is about 30 times faster and yet produces HR images of almost equal or better quality.

Local stereo matching using combined matching cost and adaptive cost aggregation

  • Zhu, Shiping;Li, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.224-241
    • /
    • 2015
  • Multiview plus depth (MVD) videos are widely used in free-viewpoint TV systems. The best-known technique to determine depth information is based on stereo vision. In this paper, we propose a novel local stereo matching algorithm which is radiometric invariant. The key idea is to use a combined matching cost of intensity and gradient based similarity measure. In addition, we realize an adaptive cost aggregation scheme by constructing an adaptive support window for each pixel, which can solve the boundary and low texture problems. In the disparity refinement process, we propose a four-step post-processing technique to handle outliers and occlusions. Moreover, we conduct stereo reconstruction tests to verify the performance of the algorithm more intuitively. Experimental results show that the proposed method is effective and robust against local radiometric distortion. It has an average error of 5.93% on the Middlebury benchmark and is compatible to the state-of-art local methods.

An Adaptive Color Enhancement Algorithm using the Preferred Color Reconstruction (선호색 보정을 이용한 화질 향상 알고리즘)

  • Yang, Kyoung-Ok;Hwang, Bo-Hyun;Lee, Seung-Jun;Yun, Jong-Ho;Chon, Myung-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • In this paper, we propose an adaptive color enhancement algorithm. It is used for the flat panel displays (FPDs) such as LCD, PDP, and so on. The proposed algorithm consists of an adaptive linear approximation CDF(Cumulative Density Function) algorithm and an adaptive saturation enhancement algorithm. The one is for contrast enhancement which prevents an image from the distortion by luminance transient of an input image. The other is the algorithm which improves the saturation without the contour artifact and over-saturation, whose problems are generated during the enhancing saturation. In addition, it allows to achieve the high quality image using the saturation enhancement method for a preferred color of original image. Visual test and standard deviation of their histograms have been applied to evaluate the resultant output images of the proposed algorithm.

ECG Data Compression Using Adaptive Fractal Interpolation (적응 프랙탈 보간을 이용한 심전도 데이터 압축)

  • 전영일;윤영로
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.121-128
    • /
    • 1996
  • This paper presents the ECG data compression method referred the adaptive fractal interpolation algorithm. In the previous piecewise fractal interpolation(PFI) algorithm, the size of range is fixed So, the reconstruction error of the PFI algorithm is nonuniformly distributed in the part of the original ECG signal. In order to improve this problem, the adaptive fractal interpolation(AEI) algorithm uses the variable range. If the predetermined tolerance was not satisfied, the range would be subdivided into two equal size blocks. large ranges are used for encoding the smooth waveform to yield high compression efficiency, and the smaller ranges are U for encoding rapidly varying parts of the signal to preserve the signal quality. The suggested algorithm was evaluated using MIT/BIH arrhythmia database. The AEI algorithm was found to yield a relatively low reconstruction error for a given compression ratio than the PFI algorithm. In applications where a PRD of about 7.13% was acceptable, the ASI algorithm yielded compression ratio as high as 10.51, without any entropy coding of the parameters of the fractal code.

  • PDF

NDVI 시계열 시리즈에 의한 한반도 지표면 변화 추적

  • Lee, Sang-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.97-100
    • /
    • 2009
  • The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. An adaptive feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. In this study, the Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 and 2000 using a dynamic technique, and the adaptive reconstruction of harmonic model was then applied to the NDVI time series for tracking changes on the ground surface. The results show that the adaptive approach is potentially very effective for continuously monitoring changes on near-real time.

  • PDF

Adaptive Hyperspectral Image Classification Method Based on Spectral Scale Optimization

  • Zhou, Bing;Bingxuan, Li;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 2021
  • The adaptive sparse representation (ASR) can effectively combine the structure information of a sample dictionary and the sparsity of coding coefficients. This algorithm can effectively consider the correlation between training samples and convert between sparse representation-based classifier (SRC) and collaborative representation classification (CRC) under different training samples. Unlike SRC and CRC which use fixed norm constraints, ASR can adaptively adjust the constraints based on the correlation between different training samples, seeking a balance between l1 and l2 norm, greatly strengthening the robustness and adaptability of the classification algorithm. The correlation coefficients (CC) can better identify the pixels with strong correlation. Therefore, this article proposes a hyperspectral image classification method called correlation coefficients and adaptive sparse representation (CCASR), based on ASR and CC. This method is divided into three steps. In the first step, we determine the pixel to be measured and calculate the CC value between the pixel to be tested and various training samples. Then we represent the pixel using ASR and calculate the reconstruction error corresponding to each category. Finally, the target pixels are classified according to the reconstruction error and the CC value. In this article, a new hyperspectral image classification method is proposed by fusing CC and ASR. The method in this paper is verified through two sets of experimental data. In the hyperspectral image (Indian Pines), the overall accuracy of CCASR has reached 0.9596. In the hyperspectral images taken by HIS-300, the classification results show that the classification accuracy of the proposed method achieves 0.9354, which is better than other commonly used methods.

Local Adaptive Noise Cancellation for MCG Signals Based on Wavelet Transform (웨이브릿 변환을 기반으로 한 심자도 신호의 국소 적응잡음제거)

  • 김용주;박희준;원철호;이용호;김인선;김명남;조진호
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.26-30
    • /
    • 2003
  • Magneto-cardiogram(MCG) signals may be highly distorted by the environmental noise, such as power-line interference, broadband white noise, surrounding magnetic noise, and baseline wondering. Several kinds of digital filters and noise cancellation methods have been designed and realized by many researchers, but these methods gave some problems that the original signal may be distorted by digital filter due to the wideband characteristics of background noise. To eliminate noise effectively without distortion of MCG signals, we performed multi-level frequency decomposition using wavelet packets and local adaptive noise cancellation in each local frequency range. In addition to the proposed wavelet filter to eliminate these various non-stationary noise elements, the local adaptive filter using the least mean square(LMS) algorithm and the soft threshold do-noising method are introduced in this paper. The signal to noise ratio(SNR) and the reconstruction square error(RSE) are calculated to evaluate the performance of the proposed method and compared with the results of the conventional wavelet filter and adaptive filter. The experimental results show that the proposed local adaptive filtering method is better than the conventional methods.

  • PDF

Morphological Grayscale Reconstruction Based on the Region Size and Brightness Contrast (영역의 크기와 휘도값의 대조를 고려한 수리형태학적 영상재구성)

  • 김태현;문영식
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.11b
    • /
    • pp.3-8
    • /
    • 1999
  • In this paper, we propose a new connected operator using morphological grayscale reconstruction for region-based coding. First, an effective method of reference-image creation is proposed, which is based on the size as well as the contrast. The conventional connected operators are good for removing small regions, but have a serious drawback for low-contrast regions that are larger than the structuring element. That is, when the conventional connected operators are applied to these regions. the simplification becomes less effective or several meaningful regions are merged to one region. To avoid this, the conventional geodesic dilation is modified to propose an adaptive operator. To reduce the effect of inappropriate propagation, pixels reconstructed to the original values are excluded in the dilation operation. Experimental results have shown that the proposed algorithm achieves better performance in terms of the reconstruction of flat zones. The picture quality has also been improved by about 7dB, compared to the conventional methods.

  • PDF