• Title/Summary/Keyword: Adaptive Performance

Search Result 4,467, Processing Time 0.035 seconds

Efficient Performance Enhancement Scheme for Adaptive Antenna Arrays in a Rayleigh Fading and Multicell Environments

  • Kim Kyung-Seok;Ahn Bierng-Chearl;Choi Ik-Gueu
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.49-60
    • /
    • 2005
  • In this paper, an efficient performance enhancement scheme for an adaptive antenna array under the flat and the frequency-selective Rayleigh fadings is proposed. The proposed signal enhancement scheme is the modified linear signal estimator which combines the rank N approximation by reducing noise eigenvalues(RANE) and Toeplitz matrix approximation(TMA) methods into the linear signal estimator. The proposed performance enhancement scheme is performed by not only reducing the noise component from the signal-plus-noise subspace using RANE but also having the theoretical property of noise-free signal using TMA. Consequently, the key idea of the proposed performance enhancement scheme is to greatly enhance the performance of an adaptive antenna array by removing all undesired noise effects from the post-correlation received signal. The proposed performance enhancement scheme applies at the Wiener maximal ratio combining(MRC) method which has been widely used as the conventional adaptive antenna array. It is shown through several simulation results that the performance of an adaptive antenna array using the proposed signal enhancement scheme is much superior to that of a system using the conventional method under several environments, i.e., a flat Rayleigh fading, a fast frequency-selective Rayleigh fading, a perfect/imperfect power control, a single cell, and a multicell.

On the Performances of Block Adaptive Filters Using Fermat Number Transform

  • Min, Byeong-Gi
    • ETRI Journal
    • /
    • v.4 no.3
    • /
    • pp.18-29
    • /
    • 1982
  • In a block adaptive filtering procedure, the filter coefficients are adjusted once per each output block while maintaining performance comparable to that of widely used LMS adaptive filtering in which the filter coefficients are adjusted once per each output data sample. An efficient implementation of block adaptive filter is possible by means of discrete transform technique which has cyclic convolution property and fast algorithms. In this paper, the block adaptive filtering using Fermat Number Transform (FNT) is investigated to exploit the computational efficiency and less quantization effect on the performance compared with finite precision FFT realization. And this has been verified by computer simulation for several applications including adaptive channel equalizer and system identification.

  • PDF

Adaptive Control based on a ParametricAffine Model for tail-control led Missiles (매개변수화 어파인 모델에 기반한 꼬리날개 제어유도탄의 적응제어)

  • 최진영;좌동경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.2-2
    • /
    • 2000
  • This paper presents an adaptive control against uncertainties in tail-controlled STT (skid-to-Turn) missiles. First, we derive an analytic uncertainty model from a parametricaffine missile model developed by the authors. Based on this analytic model, an adaptive feedbacklinearizing control law accompanied by a sliding model control law is proposed. We provide analyses of stability and output tracking performance of the overall adaptive missile system. The performance and validity of the proposed adaptive control scheme is demonstrated by simulation.

  • PDF

Design of a Cascade Adaptive Filter for the Performance sn Detection of Segment (ST세그먼트 검출성능향상을 종속 적응필터의 세계)

  • 박광리;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.517-524
    • /
    • 1995
  • This paper is a study on the design of the cascade adaptive filter (CAF) for baseline wandering elimination in order to enhance the performance of the detection of ST segments in ECG. The CAF using Least Mean Square (LMS) algorithm consists of two filters. The primary adaptive filter which has the cutoff frequency of 0.3Hz eliminates the baseline wandering in raw ECG The secondary adaptive filter removes the remnant baseline wandering which is not eliminated by the primary adaptive filter. The performance of the CAF was compared with the standard filter, the recursive filter, and the adaptive impulse correlated filter (AICF). As a result, the CAF showed a lower signal distortion than the standard filter and the AICF. Also, the CAF showed a better perf'ormance in noise elimination than the standard filter and the recursive filter. In conclusion, considering the characteristics of the noise elimination and the signal distortion, the CAF shows a better performance in the removal of the baseline wandering than the other three Otters and suggests the high performance in the detection of ST segment.

  • PDF

Adaptive FNN Controller for High Performance Control of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 적응 FNN 제어기)

  • 이정철;이홍균;정동화
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.569-575
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for high performance of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control Performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation. and steady- state accuracy and transient response.

Hybrid d-step prediction design with improved prediction performance (향상된 성능을 갖는 혼합 d-step 예측기 설계)

  • 김윤선;윤주홍;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.145-145
    • /
    • 2000
  • In this paper, we propose a hybrid d-step predictor which is composed of an adaptive predictor and a Kalman predictor. We prove the performance limit of the proposed predictor. Simulation is conducted to examine the performance of the proposed predictor. Simulation results show that the proposed combined predictor is superior to the adaptive predictor and the Kalman predictor. Proposed predictor is used for prediction of gun tip vibration of k1 tank. The result is compared with that of conventional adaptive predictor.

  • PDF

MRAC Fuzzy Control for High Performance of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 MRAC 퍼지제어)

  • 정동화;이정철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.215-223
    • /
    • 2002
  • This paper investigates the adaptive control of a fuzzy logic based speed and flux controller fur a vector controlled induction motor drive. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the model reference adaptive control(MRAC) fuzzy controller is evaluated by simulation for various operating conditions. The validity of the Proposed MRAC fuzzy controller is confirmed by performance results for induction motor drive system.

Adaptive Fuzzy Control for High Performance Speed Controller in PMSM Drive (PMSM 드라이브의 고성능 속도제어를 위한 적응 퍼지제어기)

  • Chung, Dong-Hwa;Lee, Jung-Chul;Lee, Hong-Gyun;Jung, Tack-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.79-81
    • /
    • 2002
  • This paper develops a adaptive fuzzy controller based fuzzy logic control for high performance speed controller in permanent magnet synchronous motor(PMSM) drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed adaptive fuzzy controller is confirmed by performance results for PMSM drive system.

  • PDF

Impulse Noise Cancellation Using Adaptive Threshold Algorithm (적응 문턱치 알고리즘을 이용한 충격잡음 제거)

  • Lee, Jin;Park, Jong-Hwan;Kim, Se-Dong;Lee, Young-Suk;Kim, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.26-34
    • /
    • 2000
  • This paper presents a new adaptive impulse noise cancelling technique based on the adaptive nonlinear suppressing function. The proposed "adaptive threshold algorithm (ATA)" is controlled by the normalized power prior input data term, and this adaptive threshold makes the cancelling system highly robust against additive impulse noise. For the performance evaluation, we have tested the proposed algorithm with the observed signals simulated in various impulsive noise environments and real EMG signals. As a result the proposed algorithm shows superior performance of 51.7% to the available techniques in the points of SNR and MSE.

  • PDF

A modified adaptive control method for improving transient performance (적응 제어 시스템의 과도상태 성능 개선을 위한 제어기 설계)

  • Seo, Won-Gi;Lee, Jin-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.124-131
    • /
    • 1997
  • This paper presents a modified adaptive control scheme that improves the transient performance of the overall system while maintaining the asymptotic convergence of the output error. The proposed control scheme is characterized as the added outer dynamic feedback loop on the conventional adaptive control scheme. This control scheme enables various robust control methods that were developed for standard model reference adaptive controllers to be applied to the proposed controller. In contrast with the modified adaptive controllers that use augmented errors to provide additional dynamic feedback, the proposed controller uses tracking error directly, thereby reducing the tracking error significantly in the transient state and making the error insensitive to noise.

  • PDF