• Title/Summary/Keyword: Adaptive Observer

Search Result 338, Processing Time 0.031 seconds

Observer Based Adaptive Control of Longitudinal Motion of Vehicles (관측자를 이용한 직진 주행 차량의 적응 제어)

  • Kim, Eung-Seok;Kim, Dong-Hun;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.130-135
    • /
    • 2001
  • In this paper, an observer-based adaptive controller is proposed to control the longitudinal motion of vehicles. The standard gradient method will be used to estimate the vehicle parameters, mass, time constant, etc. The nonlinear model between the driving force and the vehicle acceleration will be chosen to design the state observer for the vehicle velocity and acceleration. It will be shown that the proposed observer is exponentially stable, and that the adaptive controller proposed on this paper is stable. It will be proved that the errors of the relative distance, velocity and acceleration converge to zero asymptotically fast, and that the overall system is also asymptotically stable. The simulation results are presented to investigate the effectiveness of the proposed method.

  • PDF

Adaptive Observer using Auto-generating B-splines

  • Baang, Dane;Stoev, Julian;Choi, Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.479-491
    • /
    • 2007
  • This paper presents a new adaptive observer design method for a class of uncertain nonlinear systems by using spline approximation. This scheme leads to a simplified observer structure which requires only fixed number of integrations, regardless of the number of parameters to be estimated. This benefit can reduce the number of integrations of the observer filter dramatically. Moreover, the proposed adaptive observer automatically generates the required spline elements according to the varying output value and, as a result, does not requires the pre-knowledge of upper and lower bounds of the output. This is another benefit of our approach since the requirement for known output bounds have been one of the main drawbacks of practical universal approximation problems. Both of the benefits stem from the local support property, which is specific to splines.

Robust Adaptive Backstepping Control of Induction Motors Using Nonlinear Disturbance Observer (비선형 외란 관측기를 이용한 유도전동기의 강인 적응 백스테핑 제어)

  • Lee, Eun-Wook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.127-134
    • /
    • 2008
  • In this paper, we propose a robust adaptive backstepping control of induction motors with uncertainties using nonlinear disturbance observer(NDO). The proposed NDO is applied to estimate the time-varying lumped uncertainty which are derived from unknown motor parameters and load torque, but NDO error does not converge to zero since the derivate of lumped uncertainty is not zero. Then the fuzzy neural network(FNN) is presented to estimate the NDO error such that the rotor speed to converge to a small neighborhood of the desired trajectory. Rotor flux and inverse time constant are estimated by the sliding mode adaptive flux observer. Simulation results are provided to verify the effectiveness of the proposed approach.

Design of an Adaptive Observer without Using Output Derivative Measurements (출력의 미분항을 사용하지 않는 적응 관측기 설계 방법)

  • 손영익;심형보;백주훈;조남훈
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.395-401
    • /
    • 2004
  • By using an adaptive algorithm, together with an additional dynamic system, this paper proposes a new approach to design of a state observer for a class of uncertain systems. We enlarge the class of linear systems from the canonical form of [1] by proposing an adaptive observer that allows unknown parameters to affect those unmeasured states. The result is based on a recent result which presents a design algorithm for an additional system to replace output derivative measurements with the additional dynamics. A numerical example illustrates the design procedure of the state observer.

On a Configuration of the Model Reference Adaptive Control Systems -Adaptive Observer- (기준모델적응시스팀의 구성에 관한 연구 -적응관측자에 관하여-)

  • 장세훈;이순영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.9 no.3
    • /
    • pp.108-112
    • /
    • 1984
  • The motivation in this paper is in obtaining an adaptive observer with simple configuaration and faster adapting speed. The identification and state estimation are seperated to increase the adapting speed of the adaptive observer. The method of identification proposed by Ichikawa is modified. And the adaptive observer is constructed by using the output of state variable filters that are used in identification. Finally, the digital simulation results to the proposed system are presented.

  • PDF

Nonlinear Adaptive Control Law for ALFLEX Using Dynamic Inversion and Disturbance Accommodation Control Observer

  • Higashi, Daisaku;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1871-1876
    • /
    • 2005
  • In this paper, We present a new nonlinear adaptive control law using a disturbance accommodating control (DAC) observer for a Japanese automatic landing flight experiment vehicle called ALFLEX. A future spaceplane must have ability to deal with greater fluctuations in the stability and control derivatives of flight dynamics, because its flight region is much wider than that of conventional aircraft. In our previous studies, digital adaptive flight control systems have been developed based on a linear-parameter-varying (LPV) model depending on dynamic pressure, and obtained good simulation results. However, under previous control laws, it is difficult to accommodate uncertainties represented by disturbance and nonlinearity, and to design a stable flight control system. Therefore, in this study, we attempted to design a nonlinear adaptive control law using the DAC Observer and inverse dynamic methods. A good tracking property of the obtained system was confirmed in numerical simulation.

  • PDF

Sensorless Speed Control of IPMSM using an Adaptive Sliding mode Observer (적응 슬라이딩 관측기를 이용한 매입형 영구자석 동기전동기의 센서리스 속도제어)

  • Kang, Hyung-Seok;Kim, Won-Seok;Kim, Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.271-279
    • /
    • 2006
  • In this paper, a new speed sensorless control based on an adaptive sliding mode observer is proposed lot the interior permanent magnet synchronous motor(IPMSM) drives. With using voltage equation only, the adaptive sliding mode observer was investigated. Since the parameter of the dynamic equation such as machine inertia or viscosity friction coefficient are not well known and these values can be easily changed during normal operation, there are many restrictions in the actual implementation. The proposed adaptive sliding mode observer applied to overcome the problem caused by using the dynamic equation. Furthermore, the Lyapunov function is used to prove the system stability included speed estimate and speed control. The effectiveness of the proposed algorithm is confirmed by the experiments.

Adaptive Flux Observer with On-line Inductance Estimation of an Interior PM Synchronous Machine Considering Magnetic Saturation

  • Jeong, Yu-Seok;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.188-197
    • /
    • 2009
  • This paper presents an adaptive flux observer to estimate stator flux linkage and stator inductances of an interior permanent-magnet synchronous machine considering magnetic saturation. The concept of static and dynamic inductances due to saturation is introduced in the machine model to describe the relationship between current and flux linkage and the relationship between their time derivatives. A flux observer designed in the stationary reference frame with constant inductance is analyzed in the rotor reference frame by a frequency-response characteristic. An adaptive algorithm for an on-line inductance estimation is proposed and a Lyapunov-based analysis is given to discuss its stability. The dynamic inductances are estimated by using Taylor approximation based on the static inductances estimated by the adaptive method. The simulation and experimental results show the feasibility and performance of the proposed technique.

Improvement on Sensorless Vector Control Performance of PMSM with Sliding Mode Observer

  • Wibowo, Wahyu Kunto;Jeong, Seok-Kwon;Jung, Young-Mi
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.129-136
    • /
    • 2014
  • This paper proposes improvement on sensorless vector control performance of a permanent magnet synchronous motor (PMSM) with sliding mode observer. An adaptive observer gain and second order cascade low-pass filter (LPF) were used to improve the estimation accuracy of the rotor position and speed. The adaptive observer gain was applied to suppress the chattering intensity and obtained by using the Lyapunov's stability criterion. The second order cascade LPF was designed for the system to escalate the filtering performance of the back-emf estimation. Furthermore, genetic algorithm was used to optimize the system PI controller's performance. Simulation results showed the effectiveness of the suggested improvement strategy. Moreover, the strategy was useful for the sensorless vector control of PMSM to operate on the low-speed area.

Sliding Mode Control of Induction Motors Using an Adaptive Sliding Mode Flux Observer (적응 슬라이딩모드 자속 관측기를 이용한 인덕션 모터의 슬라이딩 모드 제어)

  • Kim, Do-Woo;Chung, Ki-chull;Lee, Seng-Hak
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.10
    • /
    • pp.587-594
    • /
    • 2005
  • An adaptive observer for rotor resistance is designed to estimate rotor flux for the a-b model of an induction motor assuming that rotor speed and stator currents are measurable. A singularly perturbed model of the motor is used to design an Adaptive sliding mode observer which drives the estimated stator currents to their true values in the fast time scale. The adaptive observer on the sliding surface is based on the equivalent switching vector and both the estimated fluxes and the estimated rotor resistance converge to their true values. A speed controller considering the effects of parameter variations and external disturbance is proposed in this paper. First, induction motor dynamic model at nominal case is estimated. based on the estimated model, speed controller is designed to match the prescribed speed tracking specifications. Then a dead-time compensator and a robust controller are designed to reduce the effects of parameter variations and external disturbances. the desired speed tracking control performance can be preserved under wide operating range, and good speed load regulating performance. Some simulated results are provided to demonstrate the effectiveness of the Proposed controller.