• 제목/요약/키워드: Adaptive Neuro-fuzzy Inference System

검색결과 161건 처리시간 0.031초

퍼지 클러스터링을 이용한 퍼지 모델링과 퍼지 제어기의 설계 (Fuzzy Modeling and Design of Fuzzy Controller Using Fuzzy Clustering)

  • 곽근창;박상민;유정웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.675-678
    • /
    • 1997
  • In this paper, we present a fast and robust algorithm for the design of fuzzy controller and identifying fuzzy model from numerical data by combining the cluster estimation method with a linear least squares estimation procedure. The proposed method is compared with Adaptive Neuro-Fuzzy Inference System(ANFIS) as the standard example of neuro-fuzzy model. Finally we will show its usefulness and effectiveness for the design of fuzzy controller of a cart-pole system and fuzzy modeling for the coagulant dosing of a water purification system.

  • PDF

Neuro-fuzzy network을 이용한 고장 검출 및 판별 알고리즘에 관한 연구 (A Novel Algorithm for Fault Classification in Transmission Lines using a Combined Adaptive Network-based Fuzzy Inference System)

  • 여상민;김철환;채영무;최재덕
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.252-254
    • /
    • 2001
  • Accurate detection and classification of faults on transmission lines is vitally important. High impedance faults(HIF) in particular pose difficulties for the commonly employed conventional overcurrent and distance relays, and if not detected, can cause damage to expensive equipment, threaten life and cause fire hazards. Although HIFs are far less common than LIFs, it is imperative that any protection device should be able to satisfactorily deal with both HIFs and LIFs. This paper proposes an algorithm for fault detection and classification for both LIFs and HIFs using Adaptive Network-based Fuzzy Inference System(ANFIS). The performance of the proposed algorithm is tested on a typical 154[kV] Korean transmission line system under various fault conditions. Test results show that the ANFIS can detect and classify faults including (LIFs and HIFs) accurately within half a cycle.

  • PDF

ANFIS를 이용한 송전선로의 고장판별 기법에 관한 연구 (A Study on the Technique of Fault Classification in Transmission Lines Using a Combined Adaptive Network-Based Fuzzy Inference System)

  • 여상민;김철환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권9호
    • /
    • pp.417-423
    • /
    • 2001
  • This paper proposes a technique for fault detection and classification for both LIF(Low Impedance Fault)s and HIF(High Impedance Fault)s using Adaptive Network-based Fuzzy Inference System(ANFIS). The inputs into ANFIS are current signals only based on Root-Mean-Square(RMS) values of 3-phase currents and zero sequence current. The performance of the proposed technique is tested on a typical 154 kV Korean transmission line system under various fault conditions. Test results show that the ANFIS can detect and classily faults including (LIFs and HIFs) accurately within half a cycle.

  • PDF

mGA를 사용한 복잡한 비선형 시스템의 뉴로-퍼지 모델링 (Neuro-Fuzzy Modeling of Complex Nonlinear System Using a mGA)

  • 최종일;이연우;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2305-2307
    • /
    • 2000
  • In this paper we propose a Neuro-Fuzzy modeling method using mGA for complex nonlinear system. mGA has more effective and adaptive structure than sGA with respect to using the changeable-length string. This paper suggest a new coding method for applying the model's input and output data to the number of optimul rules of fuzzy models and the structure and parameter identifications of membership function simultaneously. The proposed method realize optimal fuzzy inference system using the learning ability of Neural network. For fine-tune of the identified parameter by mGA, back-propagation algorithm used for optimulize the parameter of fuzzy set. The proposed fuzzy modeling method is applied to a nonlinear system to prove the superiority of the proposed approach through compare with ANFIS.

  • PDF

VmGA를 이용한 비선형 시스템의 뉴로-퍼지 모델링 (Neuro-Fuzzy Modeling for Nonlinear System Using VmGA)

  • 최종일;이연우;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.1952-1954
    • /
    • 2001
  • In this paper, we propose the neuro-fuzzy modeling method using VmGA (Virus messy Genetic Algorithm) for the complex nonlinear system. VmGA has more effective and adaptive structure than sGA. in this paper, we suggest a new coding method for applying the model's input and output data to the optimal number of rules in fuzzy models and the structure and parameter identification of membership functions simultaneously. The proposed method realizes the optimal fuzzy inference system using the learning ability of neural network. For fine-tune of parameters identified by VmGA, back- propagation algorithm is used for optimizing the parameter of fuzzy set. The proposed fuzzy modeling method is applied to a nonlinear system to prove the superiority of the proposed approach through comparing with ANFIS.

  • PDF

인공지능망과 뉴로퍼지 모델을 이용한 주거건물 냉난방 시스템 조절 로직 및 예비 성능 시험 (Development of ANN- and ANFIS-based Control Logics for Heating and Cooling Systems in Residential Buildings and Their Performance Tests)

  • 문진우
    • 한국주거학회논문집
    • /
    • 제22권3호
    • /
    • pp.113-122
    • /
    • 2011
  • This study aimed to develop AI- (Artificial Intelligence) based thermal control logics and test their performance for identifying the optimal thermal control method in buildings. For this objective, a conventional Two-Position On/Off logic and two AI-based variable logics, which applied ANN (Artificial Neural Network) and ANFIS (Adaptive Neuro-Fuzzy Inference System), have developed. Performance of each logic was tested in a typical two-story residential building in U.S.A. using the computer simulation incorporating MATLAB and IBPT (International Building Physics Toolbox). In the analysis of the test results, AI-based control logic presented the advanced thermal comfort with stability compared to the conventional logic while they did not show significant energy saving effects. In conclusion, the predictive and adaptive AI-based control logics have a potential to maintain interior air temperature more comfortably, and the findings in this study could be a solid foundation for identifying the optimal thermal control method in buildings.

뉴로-퍼지를 이용한 만성적인 스트레스 평가 (Chronic Stress Evaluation using Neuro-Fuzzy)

  • 신재우;설아람;성홍모;김원식;차동익;이철규;윤영로
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권5호
    • /
    • pp.465-471
    • /
    • 2003
  • 본 논문에서는 생체신호 파라미터들을 이용해서 만성적인 스트레스를 평가하는 방법을 개발하고자 하였다. Wistar 쥐에게 14 일간의 소음 스트레스를 부과하고, 매 시간마다 생체신호를 획득하였다. 생체신호로부터 추출한 파라미터들을 통합하기 위한 퍼지추론시스템을 구축하기 위하여, 적응형 뉴로-퍼지 추론시스템으로 퍼지추론시스템의 파라미터들을 구하였다. 훈련 데이터 집합 중 입력 데이터 집합은 생체신호로부터 추출한 파라미터들을, 출력 데이터 집합은 코티솔 호르몬의 생성량으로부터 추정한 목표값을 사용하였다. 퍼지추론시스템으로 생체신호 파라미터들을 통합하고, 그 결과를 24 시간마다 구분하여 Cosinor 분석법을 적용하여 생체리듬의 변화를 관찰하였다. 생체리듬이 깨어진 정도에 의해서 만성적인 스트레스를 평가하였다. 생체신호 파라미터들을 퍼지추론으로 통합하고, 그 결과에서 생체리듬을 분석하여 스트레스 정도를 계산했다. 휴식기의 스트레스 정도를 l이라고 가정하면, 소음 스트레스를 받은지 14일째 되는 날에는 1.37. 7일간의 회복 후에는 1.47의 스트레스 정도가 나왔다. 즉, 쥐는 14일간의 소음으로 휴식 때보다 37% 증가된 스트레스를 받았고, 7일의 회복기를 통해 스트레스로부터 회복되지 않았다.

뉴로-퍼지 추론시스템을 이용한 입체 영상 카메라의 왜곡 영상 보정 (A Compensation for Distortion of Stereo-scopic Camera Image Using Neuro-Fuzzy Inference System)

  • 서한석;임화영
    • 한국전자통신학회논문지
    • /
    • 제5권3호
    • /
    • pp.262-268
    • /
    • 2010
  • 본 논문은 카메라의 고정 초점방식 렌즈를 통해 얻은 영상의 왜곡을 보상하여 왜곡된 이미지 좌표에서 본래의 좌표를 갖는 원영상으로 복원하는 연구이다. 이미지 센서의 다양한 영상 기기 발달과 활용으로 다방면의 산업분야에 확대 이용되고 있으나, 카메라의 소형화와 경량화 필요로 인해 렌즈의 굴곡에 의한 수신 영상의 왜곡이 영향을 미치는 경향이 많다. 특히, 입체 영상 카메라 응용 기기인 경우 좌, 우측 렌즈의 서로 다른 왜곡으로 입체감 저하 및 좌우 이미지 왜곡 등이 수반된다. 좌, 우측 카메라 수신 영상의 각 부분별로 본래의 좌표로 환산하는 근사식을 세우고 이들을 종합하는 방식으로 접근했다. 적응 뉴로-퍼지 추론시스템을 구성하여 소속 함수를 통해 분할하고 1차 Sugeno fuzzy 모델식으로 추정하여 좌, 우측 본래의 영상에 근접한 결과를 얻었다. 이로서 저가이며 소형 렌즈를 활용한 영상으로도 정확한 입체 영상 센싱 기능과 판별을 기대할 수 있게 된다.

전역근사최적화를 위한 소프트컴퓨팅기술의 활용 (Utilizing Soft Computing Techniques in Global Approximate Optimization)

  • 이종수;장민성;김승진;김도영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.