• 제목/요약/키워드: Adaptive Neural Network

검색결과 881건 처리시간 0.029초

신경회로망을 이용한 AUV의 시스템 동정화 및 응용 (System Idenification of an Autonomous Underwater Vehicle and Its Application Using Neural Network)

  • 이판묵;이종식
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.131-140
    • /
    • 1994
  • Dynamics of AUV has heavy nonlinearities and many unknown parameters due to its bluff shape and low cruising speed. Intelligent algorithms, therefore, are required to overcome these nonlinearities and unknown system dynamics. Several identification techniques have been suggested for the application of control of underwater vehicles during last decade. This paper applies the neural network to identification and motion control problem of AUVs. Nonlinear dynamic systems of an AUV are identified using feedforward neural network. Simulation results show that the learned neural network can generate the motion of AUV. This paper, also, suggest an adaptive control scheme up-dates the controller weights with reference model and feedforward neural network using error back propagation.

  • PDF

마찰변수 관측기와 적응순환형 퍼지신경망을 이용한 PMLSM의 강인한 위치제어 (Robust Position Control for PMLSM Using Friction Parameter Observer and Adaptive Recurrent Fuzzy Neural Network)

  • 한성익;여대언;김새한;이권순
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.241-250
    • /
    • 2010
  • A recurrent adaptive model-free intelligent control with a friction estimation law is proposed to enhance the positioning performance of the mover in PMLSM system. For the PMLSM with nonlinear friction and uncertainty, an adaptive recurrent fuzzy neural network(ARFNN) and compensated control law in $H_{\infty}$ performance criterion are designed to mimic a perfect control law and compensate the approximated error between ideal controller and ARFNN. Combined with friction observer to estimate nonlinear friction parameters of the LuGre model, on-line adaptive laws of the controller and observer are derived based on the Lyapunov stability criterion. To analyze the effectiveness our control scheme, some simulations for the PMLSM with nonlinear friction and uncertainty were executed.

CDMA System에서 협대역 간섭제거 적응 상관기에 관한 연구 (A Study On Adaptive Correlator Receiver with Narrow-band Interferance in CDMA System)

  • 정찬주;양화섭;김용식;오승재;김재갑
    • 경영과정보연구
    • /
    • 제3권
    • /
    • pp.201-214
    • /
    • 1999
  • Adaptive correlator receiver with neural network based on complex multilayer perceptron is persented for suppressing interference of narrow-band of direct spread spectrum communication systems. Recursive least square algorithm with backpropagation error is used for fast convergence and better performance in adaptive correlator scheme. According to signal noise and transmission power, computer simulation results show that bit error ratio of adaptive correlator using neural network improved that of adative transversal filter of direct sequence spread spectrum considering of jamming and narrow-band interference. Bit error ratio of adaptive correlator with neural network is reduced about 10-1 than that of adaptive transversal filter where interference versus signal ratio is 5dB.

  • PDF

Stable Intelligent Control of Chaotic Systems via Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.316-321
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network based controller using direct adaptive control method to deal with a stable intelligent control of chaotic systems. The various uncertainties, such as mechanical parametric variation, external disturbance, and unstructured uncertainty influence the control performance. However, the conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on direct adaptive control method with adaptive learning rates is proposed to control chaotic nonlinear systems whose mathematical models are not available. The adaptive learning rates are derived in the sense of discrete-type Lyapunov stability theorem, so that the convergence of the tracking error can be guaranteed in the closed-loop system. In the whole design process, the strict constrained conditions and prior knowledge of the controlled plant are not necessary due to the powerful learning ability of the proposed intelligent control system. The gradient-descent method is used for training a wavelet neural network controller of chaotic systems. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with application to the chaotic systems.

  • PDF

신경 회로망을 이용한 적응 제어 시스템의 설계 (Design of an Adaptive Control System using Neural Network)

  • 장태인;이형찬;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.231-234
    • /
    • 1993
  • This paper deals with the design of an adaptive controller using neural network. We present RBFMLP Neural Network which consists of serial-connected two networks - Radial Basis Function Network and Multi Layer Perceptron, and then design a controller based on proposed networks with the adaptive control system structure, The plant and parameters of the controller are identified by the neural networks. We use the dynamic backpropagation algorithm for the learning of networks. Simulations represent the superiorities of the proposed network and the controller.

  • PDF

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

신경회로망 동정기법에 기초한 HIA 적응 PID 제어기를 이용한 AGV의 주행제어에 관한 연구 (A Study on Driving Control of an Autonomous Guided Vehicle using Humoral Immune Algorithm Adaptive PID Controller based on Neural Network Identifier Technique)

  • 이영진;서진호;이권순
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.65-77
    • /
    • 2004
  • In this paper, we propose an adaptive mechanism based on immune algorithm and neural network identifier technique. It is also applied fur an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To solve this problem, we use the neural network identifier (NNI) technique fur modeling the plant and humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using an immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. Finally, the simulation and experimental result fur the control of steering and speed of AGV system illustrate the validity of the proposed control scheme. These results for the proposed method also show that it has better performance than other conventional controller design methods.

불확실한 비선형 계통에 대한 동적인 구조를 가지는 강인한 적응 신경망 제어기 설계 (Robust Adaptive Neural Network Controller with Dynamic Structure for Nonaffine Nolinear Systems)

  • 박장현;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제7권8호
    • /
    • pp.647-655
    • /
    • 2001
  • In adaptive neuro-control, neural networks are used to approximate unknown plant nonlinearities. Until now, most of the studies in the field of controller design for nonlinear system using neural network considers the affine system with fixed number of neurons. This paper considers nonaffine nonlinear systems and on-line variation of the number of neurons. A control law and adaptive laws for neural network weights are established so that the whole system is stable in the sense of Lyapunov. In addition, at the expense of th input, tracking error converges to the arbitrary small neighborhood of the origin. The efficiency of the proposed scheme is shown through simulations ofa simple nonaffine nonlinear system.

  • PDF

An Adaptive Dead-time Compensation Strategy for a Permanent Magnet Synchronous Motor Drive Using Neural Network

  • Urasaki Naomitsu;Senjyu Tomonobu;Funabashi Toshihisa;Sekine Hideomi
    • Journal of Power Electronics
    • /
    • 제6권4호
    • /
    • pp.279-289
    • /
    • 2006
  • This paper presents a neural network based adaptive dead-time compensation strategy for an inverter fed permanent magnet synchronous motor drive. The neural network is used for identifying the dead-time compensation time (DTCT) that includes an equivalent dead-time, turn-on/off time and on-state voltage components of the voltage source inverter. In order to train the neural network, desired DTCTs for eight operating points are prepared as training data. The trained neural network can identify a desired DTCT for any operating point because it has the capability of the interpolation. The accuracy of the identified DTCT is experimentally confirmed by comparing the calculated active power with a measured one.

신경회로망과 수학적 방정식을 이용한 최적의 용입깊이 예측에 관한 연구 (A Study on Prediction of Optimized Penetration Using the Neural Network and Empirical models)

  • 전광석
    • 한국생산제조학회지
    • /
    • 제8권5호
    • /
    • pp.70-75
    • /
    • 1999
  • Adaptive control in the robotic GMA(Gas Metal Arc) welding is employed to monitor the information about weld characteristics and process paramters as well as modification of those parameters to hold weld quality within the acceptable limits. Typical characteristics are the bead geometry composition micrrostructure appearance and process parameters which govern the quality of the final weld. The main objectives of this paper are to realize the mapping characteristicso f penetration through the learning. After learning the neural network can predict the pene-traition desired from the learning mapping characteristic. The design parameters of the neural network estimator(the number of hidden layers and the number of nodes in a layer) were chosen from an error analysis. partial-penetration single-pass bead-on-plate welds were fabricated in 12mm mild steel plates in order to verify the performance of the neural network estimator. The experimental results show that the proposed neural network estimator can predict the penetration with reasonable accuracy and gurarantee the uniform weld quality.

  • PDF