• Title/Summary/Keyword: Adaptive MIMO-OFDM

Search Result 32, Processing Time 0.033 seconds

A Simple Bit Allocation Scheme Based on Grouped Sub-Channels for V-BLAST OFDM Systems (V-BLAST OFDM 시스템을 위한 그룹화된 부채널 기반의 간단한 형태의 비트 할당 기법)

  • Park Dae-Jin;Yang Suck-Chel;Kim Jong-Won;Yoo Myung-Sik;Lee Won-Cheol;Shin Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.680-690
    • /
    • 2006
  • In this paper, we present a bit allocation scheme based on grouped sub-channels for MIMO-OFDM (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing) systems using V-BLAST (Vertical-Bell laboratories LAyered Space-Time) detector. A fully adaptive modulation and coding scheme may provide optimal performance in the MIMO-OFDM systems, however it requires excessive feedback information. Instead, SBA (Simplified Bit Allocation) scheme for reduction of feedback overhead, which applies the same modulation and coding to all the good sub-channels, may be considered. The proposed scheme in this paper named SBA-GS (Simplified Bit Allocation based on Grouped Sub-channels) groups sub-channels and assigns the same modulation and coding to the set of selected sub-channel groups. Simulation results show that the proposed scheme achieves comparable bit error rate performance of the conventional SBA scheme, while significantly reducing the feedback overhead in multipath channels with small delay spreads.

Margin Adaptive Optimization in Multi-User MISO-OFDM Systems under Rate Constraint

  • Wei, Chuanming;Qiu, Ling;Zhu, Jinkang
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • In this paper, we focus on the total transmission power minimization problem for downlink beamforming multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems while ensuring each user's QoS requirement. Although the linear integer programming (LIP) solution we formulate provides the performance upper bound of the margin adaptive (MA) optimization problem, it is hard to be implemented in practice due to its high computational complexity. By regarding each user's equivalent channel gain as approximate independent values and using iterative descent method, we present a heuristic MA resource allocation algorithm. Simulation results show that the proposed algorithm efficiently converges to the local optimum, which is very close to the performance of the optimal LIP solution. Compared with existing space division multiple access (SDMA) OFDM systems with or without adaptive resource allocation, the proposed algorithm achieves significant performance improvement by exploiting the frequency diversity and multi-user diversity in downlink multiple-input single-output (MISO) OFDM systems.

Channel Prediction based Adaptive Channel Tracking cheme in MIMO-OFDM Systems with Null Sub-carriers (Null 부반송파를 갖는 MIMO-OFDM에서 채널 예측 기반적응 채널 추적 방식)

  • Jeon, Hyoung-Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.556-564
    • /
    • 2007
  • This paper proposes an efficient scheme to track a time variant channel induced by multi-path Rayleigh fading in mobile MIMO-OFDM systems with null sub-carriers. The proposed adaptive channel tracking scheme removes in the frequency domain the interfering signals of the other transmit (Tx) antennas by using a predicted channel frequency response before starting the channel estimation. Time domain channel estimation is then performed to reduce the additive white Gaussian noise (AWGN). The simulation results show that the proposed method is better than the conventional channel tracking method [3] in time varying channel environments. At a Doppler frequency of 300 Hz and bit error rates (BER) of 10-3, signal-to-noise power ratio (Eb/N0) gains of about 2.5 dB are achieved relative to the conventional channel tracking method [3]. At a Doppler frequency of 600 Hz, the performance difference between the proposed method and conventional one becomes much larger.

Performance Improvement of MIMO-OFDMA system with beamformer

  • Kim, Chan Kyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.60-68
    • /
    • 2019
  • In this paper, we propose the adaptive beamforming algorithm for the MIMO (Multi-Input Multi-Out)-OFDMA(Orthogonal Frequency Division Multiplexing Access)system to improve the performance. The performance of MIMO-OFDMA systems is greatly decreased in the wireless channel environment with multiusers, because the received signals are much distorted by a cochannel interference (CCI) during the space-time decoding. The proposed approach can track the DOA of each signal from the multiple antennas of the desired user without being greatly dependent on the impinging angle. And beams are directed toward the multiple transmitters of the desired user while null beams are directed toward interference directions. Therefore, we can can effectively cancel CCI and mitigate the impairment of delay spread while preserving the STC(space time code) diversity. BER performance improvement is investigated through computer simulation by applying the proposed approach to MIMO-OFDMA system in a multipath fading channel with CCI.

Capacity Maximizing Adaptive Subcarrier Selection in OFDM with Limited Feedback (OFDM 용량 극대화를 위한 적응 부 반송파 선택에 관한 연구)

  • Mun Cheol;Jung Chang-Kyoo;Park DongHee;Kwak Yoonsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.905-911
    • /
    • 2005
  • We propose an efficient adaptive subcarrier selection scheme, in which the active subcarriers and their modulation and coding schemes (MCSs) are selected at the receiver, and subsequently conveyed to the transmitter using limited feedback We theoretically show that capacity maximization can be achieved by selecting subcarriers with highest signal-to-noise ratios (SNRs) and adapting the number of active subcarriers according to channel environments. Furthermore, an ordering based adaptive subcarrier selection algorithm is proposed to select the optimal active subcarriers with low complexity. Numerical results show that the proposed adaptive subcarrier selection scheme provides higher capacity than that obtained by water-filling approaches, even with limited feedback.

Adaptive Multi-Antenna Channel Estimation Scheme for Uplink Multiuser Environments (다중사용자 상향링크 환경을 위한 적응형 다중안테나 채널추정 기법)

  • Kim, Kyung Jun;Choi, Kyung Jun;Lee, Jinnyeong;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1293-1295
    • /
    • 2015
  • In this letter, an adaptive multi-antenna channel estimation scheme is proposed for uplink multiuser environments such as LTE-A systems to accurately estimate time-varying channels within an affordable complexity. It is confirmed that the proposed channel estimator can achieve accurate channel tracking performance even when various time-varying channel environments and traffic patterns are provided.

An efficient Channel Estimation Technique of OFDM-Base Space-Time Coded Wireless LAN Systems

  • Kim, Dong-Ok
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.61-66
    • /
    • 2004
  • This paper presents a way to maximize transmission efficiency and reception ability through transmission diversity technology, which can be adapted to wireless multimedia Wireless LAN system. The presented method is a comparative analysis between a case where parameter a for time average is 0.3.1 with consideration of channel presumption with two types of rms delayed spread, which is 50nsec. 150nsec, for the performance analysis of STTC (Space-Time Trellis Code) adopting time-space ciphering method appropriate for MIMO channel, and performance in the case where presumed channel value from long training column section is applied to according frame in a single frame. The result showed that BER brought SNR improvement of l.0dB in $10^{-3}$ when a was 0.3 than adopting only the long training column, and showed increase of general performance improvement for the sake of time average rather than the case without.

Dynamic Resource Allocation Scheme for Multiple Antenna OFDM-based Wireless Multicast Systems (다중안테나 OFDM 멀티캐스트 시스템을 위한 동적 자원할당 알고리즘)

  • Xu, Jian;Lee, Sang-Jin;Kang, Woo-Seok;Seo, Jong-Soo
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.883-891
    • /
    • 2008
  • Multiple antenna orthogonal frequency division multiplexing (OFDM) is a promising technique for the high downlink-capacity in the next generation wireless systems, in which adaptive resource allocation is an important research issue that can significantly improve the performance with guaranteed QoS for users. However, most of the current resource allocation algorithms are limited to unicast system. In this paper, dynamic resource allocation is studied for multiple antenna OFDM based systems with multicast service. In the simulation, the performance of multicast system was compared with that of the unicast system. Numerical results also show that by using the proposed algorithms the system capacity is significantly improved compared with the conventional scheme.

Joint Kalman Channel Estimation and Turbo Equalization for MIMO OFDM Systems over Fast Fading Channels

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Shen, Ye-Shun;Liao, Chih-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5394-5409
    • /
    • 2019
  • The paper investigates a novel detector receiver with Kalman channel information estimator and iterative channel response equalization for MIMO (multi-input multi-output) OFDM (orthogonal frequency division multiplexing) communication systems in fast multipath fading environments. The performances of the existing linear equalizers (LE) are not good enough over most fast fading multipath channels. The existing adaptive equalizer with decision feedback structure (ADFE) can improve the performance of LE. But error-propagation effect seriously degrades the system performance of the ADFE, especially when operated in fast multipath fading environments. By considering the Kalman channel impulse response estimation for the fast fading multipath channels based on CE-BEM (complex exponential basis expansion) model, the paper proposes the iterative receiver with soft decision feedback equalization (SDFE) structure in the fast multipath fading environments. The proposed SDFE detector receiver combats the error-propagation effect for fast multipath fading channels and outperform the existing LE and ADFE. We demonstrate several simulations to confirm the ability of the proposed iterative receiver over the existing receivers.

PSNR based adaptive Resource allocation for multimedia multicast service over 4G networks (4G networks의 멀티미디어 멀티캐스트 서비스에서 PSNR기반의 효율적인 Resource allocation)

  • Kim, Junoh;Kwon, Yong Il;Suh, Doug Young
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.102-104
    • /
    • 2011
  • 최근 비디오 스트리밍과 대화형 비디오 서비스 등과 같은 광대역 멀티미디어 서비스를 지원하기 위하여 Wimax와 같은 4G 무선네트워크 시스템 기술이 발전해 왔다. 4G 무선네트워크의 OFDM(Orthogonal Frequency Division Multiplexing)과 MIMO(multi Input Multi Output)은 사용자들에게 매우 유연한 QoS(Quality of Service) 서비스를 제공해 줄 수 있다.[1] 이 논문에서는 다양한 네트워크 상황에서 멀티캐스트 그룹에게 효율적인 방법으로 통신 자원을 할당하기 위해 OFDM 방법을 사용 하였다. 이에 본 논문에서는 한 셀(cell) 내의 서로 다른 멀티캐스트의 그룹의 다른 SNR(Signal to noise Ratio)의 사용자 분포에 따른 적응적인 scalable 비디오 멀티캐스트 방식을 제안한다. 더 나은 수신율을 가진 사용자는 최적의 MCS(Modulation and Coding Scheme) 할당을 통해 서로 다른 화질의 scalable 비디오 계층 중 높은 해상도의 비디오를 받을 수 있다. 논문에서는 전체 전송률을 최적화 하는 대신 전송받은 전체 비디오의 평균 화질을 최적화하는 방법을 제안한다.

  • PDF