International Journal of Control, Automation, and Systems
/
제4권2호
/
pp.155-164
/
2006
This paper focuses on a new optimization technique of a fuzzy logic based proportional integral (FLPI) load frequency controller by the multiple tabu search (MTS) algorithm. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the MTS algorithm is proposed to simultaneously tune proportional integral gains, the membership functions and control rules of a FLPI load frequency controller in order to minimize the frequency deviations of the interconnected power system against load disturbances. The MTS algorithm introduces additional techniques for improvement of the search process such as initialization, adaptive search, multiple searches, crossover and restart process. Simulation results explicitly show that the performance of the proposed FLPI controller is superior to conventional PI and FLPI controllers in terms of overshoot and settling time. Furthermore, the robustness of the proposed FLPI controller under variation of system parameters and load change are higher than that of conventional PI and FLPI controllers.
In this paper, the sensorless MPPT algorithm is proposed where the performance of varied duty ratio change has been improved using multi-layer neuro-fuzzy that aligns with neuro-fuzzy based optimized membership function. Since the change of duty ratio of sensorless MPPT is varied by using the neuro-fuzzy, the MPPT response speed is faster than the convectional method and is able to reduce the steady-state ripple. The neuro fuzzy controller has the response characteristics which is superior to the existing fuzzy controller, because of the usage of the optimal width of the fuzzy membership function. The effectiveness of the proposed method has been verified by simulations and experimental results.
The paper concerns the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation. The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. Thestructural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.
Genetic algorithms are becoming more popular because of their relative simplicity and robustness. Genetic algorithms are global search techniques for nonlinear optimization. However, traditional genetic algorithms, though robust, are generally not the most successful optimization algorithm on any particular domain because they are poor at hill-climbing, whereas simulated annealing has the ability of probabilistic hill-climbing. Therefore, hybridizing a genetic algorithm with other algorithms can produce better performance than using the genetic algorithm or other algorithms independently. In this paper, we propose an efficient hybrid optimization algorithm named the adaptive random signal-based learning. Random signal-based learning is similar to the reinforcement learning of neural networks. This paper describes the application of genetic algorithms and simulated annealing to a random signal-based learning in order to generate the parameters and reinforcement signal of the random signal-based learning, respectively. The validity of the proposed algorithm is confirmed by applying it to two different examples.
영상처리를 통한 이동 물체 인식과 화질 개선 등의 연구에서 조명 변화가 성능에 큰 영향을 미치기 때문에 조명 변환에 대한 대응은 컴퓨터 비전 응용 분야에서의 중요한 관심사 중 하나이다. 조명 변화를 감지할 수 있게 되면 변화가 있는 시점에서부터 적절한 개선 알고리즘을 적용함으로써 인식률 향상 및 화질 개선 효과를 증대시킬 수 있다. 이에 본 연구에서는 급격한 조명 변화를 감지함에 있어 실시간성을 얻기 위하여 지역 정보를 이요하고 퍼지 논리를 도입하여 이를 효과적으로 감지하는 방법을 제안한다. 급격한 조명 변화를 감지하는 효과적인 방법으로 모서리 영역과 가운데 영역에 대한 각각의 히스토그램의 평균과 편차, 그리고 변화 추이를 반영하기 위하여 이전 프레임의 각 영역에 대한 히스토그램의 평균과 편차와의 변화량을 입력으로 급격한 조명 변화가 있을 때 입력 값의 변화 패턴을 퍼지 규칙으로 만들어 조명 변화를 감지하도록 하였다. 또한 움직이는 물체에 가려 발생하는 변화와 구별하기 위하여 전체 영역에 대한 평균과 편차 변화량을 도입하여 논리적으로 추론하여 차이를 구별할 수 있도록 하였고 점진적으로 조명이 변화하는 것을 감지할 수 있도록 하였다. 다양한 테스트 데이터에 대해 객관적인 정확도 측정 기법을 이용하여 민감도와 특이도를 계산하여 제안한 방법의 효용성을 보였다. 적응형 뉴로-퍼지 추론시스템을 도입하여 대비제한 적응 히스토그램 평활화 (CLAHE)의 매개 변수를 자동으로 선택할 수 있는 방법을 제안하여 급격한 조명의 변화를 감지한 결과를 바탕으로 화질을 개선할 수 있음을 보였다.
It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.
It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.
Signals of the Electroencephalogram (EEG) can reflect the electrical background activity of the brain generated by the cerebral cortex nerve cells. This has been the mostly utilized signal, which helps in effective analysis of brain functions by supervised learning methods. In this paper, an approach for improving the accuracy of EEG signal classification is presented to detect epileptic seizures. Moreover, Independent Component Analysis (ICA) is incorporated as a preprocessing step and Short Time Fourier Transform (STFT) is used for denoising the signal adequately. Feature extraction of EEG signals is accomplished on the basis of three parameters namely, Standard Deviation, Correlation Dimension and Lyapunov Exponents. The Artificial Neural Network (ANN) is trained by incorporating Levenberg-Marquardt(LM) training algorithm into the backpropagation algorithm that results in high classification accuracy. Experimental results reveal that the methodology will improve the clinical service of the EEG recording and also provide better decision making in epileptic seizure detection than the existing techniques. The proposed EEG signal classification using feed forward Backpropagation Neural Network performs better than to the EEG signal classification using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier in terms of accuracy, sensitivity, and specificity.
The accuracy in maneuvering target tracking using multiple models is caused by the suitability of each target motion model to be used. The interacting multiple model (IMM) algorithm and the adaptive IMM (AIMM) algorithm require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers in order to construct multiple models. In this paper, to solve these problems intelligently, a genetic algorithm (GA) based-IMM method using fuzzy logic is proposed. In the proposed method, the acceleration input is regarded as an additive noise and a sub-model is represented as a set of fuzzy rules to model the time-varying variances of the process noises of a new piecewise constant white acceleration model. The proposed method is compared with the AIMM algorithm in simulations.
본 논문에서는 스텝 크기(step size)를 자동적으로 조절함으로써 빠른 수렴비와 낮은 초과 MSE를 갖는 TS(Tagaki-Sugeno) 퍼지 모델과 ISI에 강하고 위상변화에 둔감한 CMA(constant modulus algorithm)를 접목시킨 새로운 퍼지 확률 기울기(Fuzzy Stochastic Gradient) 알고리즘을 제시하고 비이상적인 전송채널에 의해서 발생한 왜곡을 보상함으로써 수신 측에서 비트 검출 오류를 감소시키기 위하여 국내 지상파 디지털 TV의 표준으로 되어 있는 VSB 방식에 적용 가능한 등화기(equalizer)를 구현하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.