• Title/Summary/Keyword: Adaptive Equalization

Search Result 266, Processing Time 0.036 seconds

A Subband Adaptive Blind Equalization Algorithm for FIR MIMO Systems (FIR MIMO 시스템을 위한 부밴드 적응 블라인드 등화 알고리즘)

  • Sohn, Sang-Wook;Lim, Young-Bin;Choi, Hun;Bae, Hyeon-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.476-483
    • /
    • 2010
  • If the data are pre-whitened, then gradient adaptive algorithms which are simpler than higher order statistics algorithms can be used in adaptive blind signal estimation. In this paper, we propose a blind subband affine projection algorithm for multiple-input multiple-output adaptive equalization in the blind environments. All of the adaptive filters in subband affine projection equalization are decomposed to polyphase components, and the coefficients of the decomposed adaptive sub-filters are updated by defining the multiple cost functions. An infinite impulse response filter bank is designed for the data pre-whitening. Pre-whitening procedure through subband filtering can speed up the convergence rate of the algorithm without additional computation. Simulation results are presented showing the proposed algorithm's convergence rate, blind equalization and blind signal separation performances.

Performance Evaluation of H-MMA Adaptive Equalization Algorithm using Adaptive Modulus and Adaptive Step Size (Adaptive Modulus와 Adaptive Step Size를 이용한 H-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.83-88
    • /
    • 2017
  • This paper related with the performance evaluation of H-MMA (Hybrid-MMA) which is applying the adaptive modulus and adaptive step size concept to MMA adaptive equalization algorithm in order to reduce the intersymbol interference that is occurred in communication channel for digital code transmission. In the conventional MMA adaptive equalizer, the coefficient is updated by using the equalizer output and possible to compensation of amplitude and phase in 2nd dimensional QAM signal, the equalization performance were degraded due to fixed modulus and step size. For the overcomming the abovemensioned problem, it is possible to improving the equalization performance in the 2nd dimensional QAM signal by applying the adaptive modulus and adaptive step size propotional to equalizer output signal to the conventional MMA algorithm. The computer simulation was performed in the same channel for the compare the performance of MMA and proposed H-MMA which is proposed in this paper. As a result of simulation, the proposed H-MMA has slower convergence time in order to arriving the steady state than MMA. But after the steady state, H-MMA has more superior to the MMA in every performance index and the equalization noise was reduced.

Performance Evaluation of Hybrid-SMMA Equalization Algorithm based on Adaptive Modulus and Adaptive Stepsize (적응 모듈러스와 적응 스텝 크기를 적용한 Hybrid-SMMA 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.123-128
    • /
    • 2017
  • This paper relates with the Hybrid-SMMA adaptive equalization algorithm that is possible to improve the equalization performance based on adaptive modulus and adaptive stepsize which is propotional to the output power of equalizer in the current SMMA (Sliced Multi Modulus Algorithm). The fixed statistic modulus of transmitted signal is used in current SMMA algorithm in order to generate the error signal for updating the tap coefficient of equalizer. The proposed Hybrid-SMMA based on the adaptive modulus which is propotion to the equalizer output signal power and adaptive stepsize which is fuction of the nonlinearties of error signal. The computer simulation was performed in order to confirm the improved equalization performance of proposed algorithm. As a result of computer simulation, the proposed Hybrid-SMMA has fairly good in every performance than the current SMMA.

A Performance Analysis of Hybrid-DSE-MMA Adaptive Equalization Algorithm based on Adaptive Modulus and Adaptive Stepsize (Adaptive Modulus와 Adaptive Stepsize를 이용한 Hybrid-DSE-MMA 적응 등화 알고리즘의 성능 분석)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.75-80
    • /
    • 2021
  • This paper relates with the Hybrid-DSE-MMA (Hybrid-Dithered Signed Error-MMA) that is possible to improving the equalization performance by using the adaptive modulus and adaptive stepsize in DSE-MMA adaptive equalizer. The DSE-MMA possible to improve the robustness performance to external noise of SE-MMA by using the sign after adding the dither signal for get the error signal in order to update the tap coefficient. But it has a drawback of performance degradation in convergence speed and residual isi by using the fixed modulus and fixed stepsize. In this paper, it was confirmed that this equalization performance degradation was improved by applying the adaptive modulus and stepsize in DSE-MMA propotional to the output power of equalizer by computer simulation. In order to compare the improved equalization performance to currently DSE-MMA, the recovered signal constellation that is the output of the equalizer, residual isi, Maximum Distortion, MSE and the SER were used as a performance index. As a result of computer simulation, the Hybrid-DSE-MMA improve the equalization performance in every index, but gives slower convergence speed compared to DSE-MMA.

Adaptive Blind MMSE Equalization for SIMO Channel

  • Ahn, Kyung-Seung;Baik, Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.753-762
    • /
    • 2002
  • Blind equalization of transmission channel is important in communication areas and signal processing applications because it does not need training sequences, nor dose it require a priori channel information. In this paper, an adaptive blind MMSE channel equalization technique based on second-order statistics in investigated. We present an adaptive blind MMSE channel equalization using multichannel linear prediction error method for estimating cross-correlation vector. They can be implemented as RLS or LMS algorithms to recursively update the cross-correlation vector. Once cross-correlation vector is available, it can be used for MMSE channel equalization. Unlike many known subspace methods, our proposed algorithms do not require channel order estimation. Therefore, our algorithms are robust to channel order mismatch. Performance of our algorithms and comparisons with existing algorithms are shown for real measured digital microwave channel.

Joint Carrier Recovery and Adaptive Blind Equalization Algorithm for High-level QAM (반송파 동기와 결합한 고차 QAM을 위한 적응 자력등화 알고리즘)

  • 임창현;김기윤;김동규;최형진
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.47-50
    • /
    • 1999
  • Adaptive channel equalization accomplished without resorting to a training sequence is known as blind equalization. The Constant Modulus Algorithm(CMA) and Modified CMA(MCMA) are widely referenced algorithms for blind equalization of a QAM system. This paper proposes a hybrid scheme of CMA and MCMA with Carrier Recovery that is robust for high level QAM with low steady state tracking error.

  • PDF

A Performance Improvement of CR-MMA Adaptive Equalization Algorithm using Adaptive Modulus and Adaptive Stepsize (Adaptive Modulus와 Adaptive Stepsize를 이용한 CR-MMA 적응 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.107-113
    • /
    • 2019
  • This paper proposes the Hybrid-CRMMA adaptive equalization algorithm that is possible to improves the performance of CR-MMA based on adaptive modulus and adaptive stepsize. The 16-QAM nonconstant modulus signal is reduced to 4-QAM constant modulus signal, and the error signal were obtained based on the fixed statistic modulus of transmitted signal. It is possible to improving the currently MMA adaptive equalization performance. The proposed Hybrid-CRMMA composed of adaptive modulus which is propotional to the power of equalizer output and adaptive stepsize which is function of the nonlinearties of error signal, and its improved equalization performance were confirmed by computer simulation. For this purpose, the output signal constellation, the residual isi and maximum distortion and MSE that is for the convergence characteristics, the SER that is meaning the robustness of external noise of algorithm were used. As a result of computer simulation, it was confirmed that the proposed Hybrid-CRMMA has more superior performance in every index compared to currently CR-MMA.

Adaptive Blind Equalization Algorithm based on Mixed-Modified Constant Modulus Algorithm (Miced-MCMA 적응 블라인드 등화 알고리즘)

  • 정영화
    • The Journal of Information Technology
    • /
    • v.1 no.2
    • /
    • pp.39-53
    • /
    • 1998
  • The CMA and MCMA adaptive blind equalization algorithm has an inevitable error caused by mismatching between the original constellation at the steady state after the equalization and the unique constellation. This problem is due to considering the new type constellation(constant modulus, reduced constellation) as desired constellation. In this paper, we propose a new adaptive blind equalization algorithm which can reach to the steady state with rapid convergence speed and achive the improvement of error value in the steady state. The Proposed algorithm has a new error function using the decided original constellation instead of the reduced constellation. By computer simulation, it is comfirmed that the proposed algorithm has the performance superiority in terms of residual ISI and convergence speed compared with the adaptive blind equalization algorithm of CMA family, Constant Modulus Algorithm with Carrier Phase Recovery and Modified CMA(MCMA).

  • PDF

The Clip Limit Decision of Contrast Limited Adaptive Histogram Equalization for X-ray Images using Fuzzy Logic (퍼지를 이용한 X-ray 영상의 대비제한 적응 히스토그램 평활화 한계점 결정)

  • Cho, Hyunji;Kye, Heewon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.806-817
    • /
    • 2015
  • The contrast limited adaptive histogram equalization(CLAHE) is an advanced method for the histogram equalization which is a common contrast enhancement technique. The CLAHE divides the image into sections, and applies the contrast limited histogram equalization for each section. X-ray images can be classified into three areas: skin, bone, and air area. In clinical application, the interest area is limited to the skin or bone area depending on the diagnosis region. The CLAHE could deteriorate X-ray image quality because the CLAHE enhances the area which doesn't need to be enhanced. In this paper, we propose a new method which automatically determines the clip limit of CLAHE's parameter to improve X-ray image quality using fuzzy logic. We introduce fuzzy logic which is possible to determine clip limit proportional to the interest of users. Experimental results show that the proposed method improve images according to the user's preference by focusing on the subject.

Nonlinear Channel Equalization Using Adaptive Neuro-Fuzzy Fiter (적응 뉴로-퍼지 필터를 이용한 비선형 채널 등화)

  • 김승석;곽근창;김성수;전병석;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.366-366
    • /
    • 2000
  • In this paper, an adaptive neuro-fuzzy filter using the conditional fuzzy c-means(CFCM) methods is proposed. Usualy, the number of fuzzy rules exponentially increases by applying the grid partitioning of the input space, in conventional adaptive neuro-fuzzy inference system(ANFIS) approaches. In order to solve this problem, CFCM method is adopted to render the clusters which represent the given input and output data. Parameter identification is performed by hybrid learning using back-propagation algorithm and total least square(TLS) method. Finally, we applied the proposed method to the nonlinear channel equalization problem and obtained a better performance than previous works.

  • PDF