• Title/Summary/Keyword: Adaptive Contrast

Search Result 241, Processing Time 0.022 seconds

Directive Spectrum Analyzing System Using a Linear Hydrophone Array (직선배열 hydrophone에 의한 수중음원의 분석)

  • CHANG Jee-Won;JEONG Jung-Hyun;SUR Doo-Og
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.265-268
    • /
    • 1981
  • The direction and spectra of underwater sound wave were a remarkable contrast to the sound wave in the air because of the difference of transmissive medium. The linear hydrophone array of passive system has so far been applied to find out the direction and spectra of underwater sound wave from the sources for many purposes. The conventional methods are generally classified into two systems such as, the system which varying frequency responses, other parameters and pattern of signal like an adaptive array controlled by internal feedback, and another system which obtaining maximum of S/N ratio by giving a appropriate delay and a weighting coefficient in the output of each hydrophone. The array device of passive system can easily change the amplitude and the phase of signal by separately controlled hydrophone. And here we introduce a method that the spectral analyzing and the direction finding can be simultaneously carried out using a linear array of hydrophones. By making a circular convolution of output of signal from each hydrophone with appropriate rectangular weighting coefficient on the array, a sharp response of single lobe directivity and the spectral analyzing by time averaging were simultaneously obtained. In tile computer simulation of the array system with the length of 250cm and the interhydrophone distance of l0cm the power levels of sound signals received from given array direction were 16dB higher than those from the other directions when processing with rectangular weightings, and 8dB higher when processing with rectangular sound signals and rectangular weightings.

  • PDF

A Method to Suppress False Alarms of Sentinel-1 to Improve Ship Detection

  • Bae, Jeongju;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.535-544
    • /
    • 2020
  • In synthetic aperture radar (SAR) based ship detection application, false alarms frequently occur due to various noises caused by the radar imaging process. Among them, radio frequency interference (RFI) and azimuth smearing produce substantial false alarms; the latter also yields longer length estimation of ships than the true length. These two noises are prominent at cross-polarization and relatively weak at co-polarization. However, in general, the cross-polarization data are suitable for ship detection, because the radar backscatter from background sea surface is much less in comparison with the co-polarization backscatter, i.e., higher ship-sea image contrast. In order to improve the ship detection accuracy further, the RFI and azimuth smearing need to be mitigated. In the present letter, Sentinel-1 VV- and VH-polarization intensity data are used to show a novel technique of removing these noises. In this method, median image intensities of noises and background sea surface are calculated to yield arithmetic tendency. A band-math formula is then designed to replace the intensities of noise pixels in VH-polarization with adjusted VV-polarization intensity pixels that are less affected by the noises. To verify the proposed method, the adaptive threshold method (ATM) with a sliding window was used for ship detection, and the results showed that the 74.39% of RFI false alarms are removed and 92.27% false alarms of azimuth smearing are removed.

Relationships Between the Characteristics of the Business Data Set and Forecasting Accuracy of Prediction models (시계열 데이터의 성격과 예측 모델의 예측력에 관한 연구)

  • 이원하;최종욱
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.1
    • /
    • pp.133-147
    • /
    • 1998
  • Recently, many researchers have been involved in finding deterministic equations which can accurately predict future event, based on chaotic theory, or fractal theory. The theory says that some events which seem very random but internally deterministic can be accurately predicted by fractal equations. In contrast to the conventional methods, such as AR model, MA, model, or ARIMA model, the fractal equation attempts to discover a deterministic order inherent in time series data set. In discovering deterministic order, researchers have found that neural networks are much more effective than the conventional statistical models. Even though prediction accuracy of the network can be different depending on the topological structure and modification of the algorithms, many researchers asserted that the neural network systems outperforms other systems, because of non-linear behaviour of the network models, mechanisms of massive parallel processing, generalization capability based on adaptive learning. However, recent survey shows that prediction accuracy of the forecasting models can be determined by the model structure and data structures. In the experiments based on actual economic data sets, it was found that the prediction accuracy of the neural network model is similar to the performance level of the conventional forecasting model. Especially, for the data set which is deterministically chaotic, the AR model, a conventional statistical model, was not significantly different from the MLP model, a neural network model. This result shows that the forecasting model. This result shows that the forecasting model a, pp.opriate to a prediction task should be selected based on characteristics of the time series data set. Analysis of the characteristics of the data set was performed by fractal analysis, measurement of Hurst index, and measurement of Lyapunov exponents. As a conclusion, a significant difference was not found in forecasting future events for the time series data which is deterministically chaotic, between a conventional forecasting model and a typical neural network model.

  • PDF

Adaptive Link Quality Estimation in Wireless Sensor Networks (무선 센서 네트워크에서 가변주기를 이용한 적응적인 전송파워 제어 기법)

  • Lee, Jung-Wook;Chung, Kwang-Sue
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1081-1085
    • /
    • 2010
  • In the wireless sensor networks, power consumption and interference among the nodes can be reduced by using the transmission power control. Because link quality is changed by spatial and temporal effect, link failures are frequently occurred. In order to adapt to link quality variation, existing transmission power control schemes broadcast beacon messages periodically to neighbor nodes and control the transmission power dynamically. However, it can effect on the time and energy overhead according to period of transmission power control. In this paper, the dynamic method of transmission power control by the link quality variation and variable period are proposed. When a link quality is unstable, the control duty cycle is reduced and the link quality is agilely maintained. In contrast, when link quality is stable, the control period is increased and control overhead is decreased.

Anisotropic Total Variation Denoising Technique for Low-Dose Cone-Beam Computed Tomography Imaging

  • Lee, Ho;Yoon, Jeongmin;Lee, Eungman
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.150-156
    • /
    • 2018
  • This study aims to develop an improved Feldkamp-Davis-Kress (FDK) reconstruction algorithm using anisotropic total variation (ATV) minimization to enhance the image quality of low-dose cone-beam computed tomography (CBCT). The algorithm first applies a filter that integrates the Shepp-Logan filter into a cosine window function on all projections for impulse noise removal. A total variation objective function with anisotropic penalty is then minimized to enhance the difference between the real structure and noise using the steepest gradient descent optimization with adaptive step sizes. The preserving parameter to adjust the separation between the noise-free and noisy areas is determined by calculating the cumulative distribution function of the gradient magnitude of the filtered image obtained by the application of the filtering operation on each projection. With these minimized ATV projections, voxel-driven backprojection is finally performed to generate the reconstructed images. The performance of the proposed algorithm was evaluated with the catphan503 phantom dataset acquired with the use of a low-dose protocol. Qualitative and quantitative analyses showed that the proposed ATV minimization provides enhanced CBCT reconstruction images compared with those generated by the conventional FDK algorithm, with a higher contrast-to-noise ratio (CNR), lower root-mean-square-error, and higher correlation. The proposed algorithm not only leads to a potential imaging dose reduction in repeated CBCT scans via lower mA levels, but also elicits high CNR values by removing noisy corrupted areas and by avoiding the heavy penalization of striking features.

A Performance Comparison of Histogram Equalization Algorithms for Cervical Cancer Classification Model (평활화 알고리즘에 따른 자궁경부 분류 모델의 성능 비교 연구)

  • Kim, Youn Ji;Park, Ye Rang;Kim, Young Jae;Ju, Woong;Nam, Kyehyun;Kim, Kwang Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.80-85
    • /
    • 2021
  • We developed a model to classify the absence of cervical cancer using deep learning from the cervical image to which the histogram equalization algorithm was applied, and to compare the performance of each model. A total of 4259 images were used for this study, of which 1852 images were normal and 2407 were abnormal. And this paper applied Image Sharpening(IS), Histogram Equalization(HE), and Contrast Limited Adaptive Histogram Equalization(CLAHE) to the original image. Peak Signal-to-Noise Ratio(PSNR) and Structural Similarity index for Measuring image quality(SSIM) were used to assess the quality of images objectively. As a result of assessment, IS showed 81.75dB of PSNR and 0.96 of SSIM, showing the best image quality. CLAHE and HE showed the PSNR of 62.67dB and 62.60dB respectively, while SSIM of CLAHE was shown as 0.86, which is closer to 1 than HE of 0.75. Using ResNet-50 model with transfer learning, digital image-processed images are classified into normal and abnormal each. In conclusion, the classification accuracy of each model is as follows. 90.77% for IS, which shows the highest, 90.26% for CLAHE and 87.60% for HE. As this study shows, applying proper digital image processing which is for cervical images to Computer Aided Diagnosis(CAD) can help both screening and diagnosing.

A deep learning-based approach for feeding behavior recognition of weanling pigs

  • Kim, MinJu;Choi, YoHan;Lee, Jeong-nam;Sa, SooJin;Cho, Hyun-chong
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1453-1463
    • /
    • 2021
  • Feeding is the most important behavior that represents the health and welfare of weanling pigs. The early detection of feed refusal is crucial for the control of disease in the initial stages and the detection of empty feeders for adding feed in a timely manner. This paper proposes a real-time technique for the detection and recognition of small pigs using a deep-leaning-based method. The proposed model focuses on detecting pigs on a feeder in a feeding position. Conventional methods detect pigs and then classify them into different behavior gestures. In contrast, in the proposed method, these two tasks are combined into a single process to detect only feeding behavior to increase the speed of detection. Considering the significant differences between pig behaviors at different sizes, adaptive adjustments are introduced into a you-only-look-once (YOLO) model, including an angle optimization strategy between the head and body for detecting a head in a feeder. According to experimental results, this method can detect the feeding behavior of pigs and screen non-feeding positions with 95.66%, 94.22%, and 96.56% average precision (AP) at an intersection over union (IoU) threshold of 0.5 for YOLOv3, YOLOv4, and an additional layer and with the proposed activation function, respectively. Drinking behavior was detected with 86.86%, 89.16%, and 86.41% AP at a 0.5 IoU threshold for YOLOv3, YOLOv4, and the proposed activation function, respectively. In terms of detection and classification, the results of our study demonstrate that the proposed method yields higher precision and recall compared to conventional methods.

Robust Scheme of Segmenting Characters of License Plate on Irregular Illumination Condition (불규칙 조명 환경에 강인한 번호판 문자 분리 기법)

  • Kim, Byoung-Hyun;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.61-71
    • /
    • 2009
  • Vehicle license plate is the only way to check the registrated information of a vehicle. Many works have been devoted to the vision system of recognizing the license plate, which has been widely used to control an illegal parking. However, it is difficult to correctly segment characters on the license plate since an illumination is affected by a weather change and a neighboring obstacles. This paper proposes a robust method of segmenting the character of the license plate on irregular illumination condition. The proposed method enhance the contrast of license plate images using the Chi-Square probability density function. For segmenting characters on the license plate, binary images with the high quality are gained by applying the adaptive threshold. Preprocessing and labeling algorithm are used to eliminate noises existing during the whole segmentation process. Finally, profiling method is applied to segment characters on license plate from binary images.

Optimization of image reconstruction method for dual-particle time-encode imager through adaptive response correction

  • Dong Zhao;Wenbao Jia;Daqian Hei;Can Cheng;Wei Cheng;Xuwen Liang;Ji Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1587-1592
    • /
    • 2023
  • Time-encoded imagers (TEI) are important class of instruments to search for potential radioactive sources to prevent illicit transportation and trafficking of nuclear materials and other radioactive sources. The energy of the radiation cannot be known in advance due to the type and shielding of source is unknown in practice. However, the response function of the time-encoded imagers is related to the energy of neutrons or gamma-rays. An improved image reconstruction method based on MLEM was proposed to correct for the energy induced response difference. In this method, the count vector versus time was first smoothed. Then, the preset response function was adaptively corrected according to the measured counts. Finally, the smoothed count vector and corrected response were used in MLEM to reconstruct the source distribution. A one-dimensional dual-particle time-encode imager was developed and used to verify the improved method through imaging an Am-Be neutron source. The improvement of this method was demonstrated by the image reconstruction results. For gamma-ray and neutron images, the angular resolution improved by 17.2% and 7.0%; the contrast-to-noise ratio improved by 58.7% and 14.9%; the signal-to-noise ratio improved by 36.3% and 11.7%, respectively.

Advances of Self-incompatibility Genetics in Genus Fagopyrum

  • Woo Sun-Hee;Soo-Jeong Kwon;Sung-Hyun Yun;Min-Young Park;Probir Kumar Mittra;Swapan Kumar Roy;Seong-Woo Cho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.191-191
    • /
    • 2022
  • Heterostyly continues to fascinate evolutionary biologists interested in heredity, evolution, breeding, and adaptive function. Polymorphism demonstrates how simply inherited developmental changes in the location of plant sexual associations can have important consequences for population pollination and mating biology. In contrast to homozygous self incompatibility, only a small number of mating phenotypes can be maintained in the population because insect pollinators have limitations in achieving multiple segregation sites for pollen deposition. Field studies of pollen tube growth have shown that reciprocal style-stamen polymorphisms function to increase the capacity of insect-mediated cross-pollination. The genetic pattern of style morphs is well established in various taxa, but despite recent advances, the identity, number, and structure of the genes controlling the heteromorphic syndrome have been poorly elucidated. The phenomenon of heterostyly in buckwheat has been controlled by gene complex concentrate to S-locus. Homomorphic autogamous buckwheat strains were established by the interspecific hybridization. Backcrossing of this line to the common buckwheat (pin) and selecting homostylar progenies made it possible to introduce the self-compatible gene into common buckwheat. In the result, we obtained the BC9F2 generation, and defined the strong linkage between flower type and self-incompatibility by microscopic observation of pollen tube growth. This finding suggests that self-incompatibility character is not controlled by one gene. Moreover, we defined the strong linkage between flower type and self-incompatibility. It strongly supports the S supergene theory. Therefore, we have plan to elucidate the heterostyly self-incompatibility by using molecular genetics, proteome analysis and apply to exploitation of buckwheat improvement. In near future, the expression of heterozygous syndromes in genus Fagopyrum with single isolated heterozygous species may provide clues to early stages of polymorphic assembly and shed light on evolutionary models of heterozygous strains.

  • PDF