The active learning surrogate model based on adaptive sampling strategy is increasingly popular in reliability analysis. However, most of the existing sampling strategies adopt the trial and error method to determine the size of the Monte Carlo (MC) candidate sample pool which satisfies the requirement of variation coefficient of failure probability. It will lead to a reduction in the calculation efficiency of reliability analysis. To avoid this defect, a new method for determining the optimal size of the MC candidate sample pool is proposed, and a new structural reliability analysis method combining polynomial chaos-based Kriging model (PC-Kriging) with adaptive sampling region is also proposed (PCK-ASR). Firstly, based on the lower limit of the confidence interval, a new method for estimating the optimal size of the MC candidate sample pool is proposed. Secondly, based on the upper limit of the confidence interval, an adaptive sampling region strategy similar to the radial centralized sampling method is developed. Then, the k-means++ clustering technique and the learning function LIF are used to complete the adaptive design of experiments (DoE). Finally, the effectiveness and accuracy of the PCK-ASR method are verified by three numerical examples and one practical engineering example.
본 논문에서는 신뢰 영역을 검출하고 이를 이용하여 미스 매치된 영역에 대한 홀을 채우고 적응적으로 시차 지도를 조정하여 경계를 보존하는 스테레오 정합 방법을 제안한다. 초기 시차 지도 추정을 위해 비용 계산은 색상(CIE Lab)과 경사도(Gradient)를 결합하여 이용하였고, 두 번의 비용 결합 함수를 적용 하여 시차 지도를 추정 하였다. 화소 불일치 영역을 검출하기 위해 왼쪽/오른쪽 교차 검사를 수행 하였다. 두 픽셀 위치에서의 차이가 1보다 크면 폐색 영역이거나 잘못된 매칭으로 판단하고 왼쪽 시차 지도에 표시 하였다. 초기 시차 지도에서 깊이 불연속성으로 인한 에러값을 구별하기 위해 Mean-shift segmentation을 사용하여 신뢰 지도를 구하고 초기 시차 지도 영상에서의 에러값을 줄이기 위해 신뢰 지도 결과를 이용하여 시차 지도 조정을 수행한다. 실험 결과 제안하는 방법이 기존의 다른 방법들과 비교하여 비교적 높은 정확도를 보이는 시차 지도를 생성 하는 것을 보였다.
Few methods have dealt with segmenting multiple images with analogous content. Concurrent images of a scene and gathered images of a similar foreground are examples of these images, which we term consistent scene images. In this paper, we present a method to segment these images based on manual segmentation of one image, by iteratively propagating information via multi-level cues with adaptive confidence. The cues are classified as low-, mid-, and high- levels based on whether they pertain to pixels, patches, and shapes. Propagated cues are used to compute potentials in an MRF framework, and segmentation is done by energy minimization. Through this process, the proposed method attempts to maximize the amount of extracted information and maximize the consistency of segmentation. We demonstrate the effectiveness of the proposed method on several sets of consistent scene images and provide a comparison with results based only on mid-level cues [1].
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권1호
/
pp.451-465
/
2017
This paper presents a novel discriminative visual tracking algorithm with an adaptive incremental extreme learning machine. The parameters for an adaptive incremental extreme learning machine are initialized at the first frame with a target that is manually assigned. At each frame, the training samples are collected and random Haar-like features are extracted. The proposed tracker updates the overall output weights for each frame, and the updated tracker is used to estimate the new location of the target in the next frame. The adaptive learning rate for the update of the overall output weights is estimated by using the confidence of the predicted target location at the current frame. Our experimental results indicate that the proposed tracker can manage various difficulties and can achieve better performance than other state-of-the-art trackers.
Moving object segmentation from a nonstationary camera is a difficult problem due to the motion of both camera and the object. In this paper, we propose a new confidence-based background subtraction technique from moving camera. The method is based on clustering of motion vectors and generating adaptive multi-homography from a pair of adjacent video frames. The main innovation concerns the use of confidence images for each foreground and background motion groups. Experimental results revealed that our confidence-based approach robustly detect moving targets in sequences taken by a freely moving camera.
실내공기오염이 인체에 미치는 영향이 실외공기오염보다 더 크며 위험하다. 일반적으로 사람은 실내에 머무는 시간이 길고, 밀폐된 실내는 오염물질이 지속적으로 쌓여 오염된 공기가 폐에 더 잘 전달된다. 특히 어린 아이들의 경우 실내공기에 매우 민감하며 치명적이다. 이와 더불어 코로나19로 인한 더 잦은 실내활동과 지속적으로 증가하는 외부 미세먼지와 함께 환기를 못하는 현재 실내공기오염을 줄이는 방법은 더욱 중요해지고 있다. 본 논문은 기존 자율주행 공기청정 로봇의 문제점을 개선하고자 지도를 분할과 UCT(Upper Confidence bounds applied to Trees) 기반의 알고리즘을 통해 자율주행 로봇이 구역을 살균하지 않거나 한곳에 계속 머무르는 문제점과 실내공기오염에 취약한 아이들의 문제를 개선할 수 있는 그린 스마트 스쿨을 위한 공간 적응형 자율주행 공기청정 로봇을 제안한다.
The use of confidence measures for word/utterance verification has become art essential component of any speech input application. Confidence measures have applications to a number of problems such as rejection of incorrect hypotheses, speaker adaptation, or adaptive modification of the hypothesis score during search in continuous speech recognition. In this paper, we present a new utterance verification method using vowel string. Using subword HMMs of VCCV unit, we create anti-models which include vowel string in hypothesis words. The experiment results show that the utterance verification rate of the proposed method is about 79.5%.
집단축차설계법은 중간분석을 실시하여 임상시험용 의약품의 유효성 또는 무용성이 조기에 발견되면 임상시험을 조기에 종료할 수 있는 시험설계법이다. 적응적 설계법은 중간분석 결과를 이용하여 시험설계를 변경하거나, 확률적으로 독립인 두개의 임상시험 결과를 결합하는 등 다양한 적응법으로 임상시험의 설계를 수정할 수 있는 시험설계법이다. 집단축차설계법과 적응적 설계법에서 주요하게 고려할 점은, 시험 전체적으로 제1종 오류를 적절히 분배하고 통제하여 임상시험 전체의 일관성을 유지하도록 하는 것이다. 반복측정자료 또는 경시적자료의 통계적 모형이 고려되는 경우에는 통계적 추론이 더욱 복잡하고 어려워진다. Lee 등 (2002)에서는 반복측정치를 가지는 임상시험에서 집단축차설계에서 미리 정한 기준에 의하여 임상시험이 종료된 후, 독립증분과 단계적 순서관계를 고려한 신뢰구간 추정법을 제안한 바 있다. 본 연구는 Lee 등 (2002)를 적응적 설계로 확장하였다. 적응법을 실시한 전과 후의 임상시험을 확률적으로 독립인 관계로 정의하는 검정통계량을 유도하여 적응적 집단축차검정법이 가능하게 하였다. 또한, 임상시험이 종료된 후 단계적 순서관계를 고려한 신뢰구간 추정법을 제안하였으며, 모의실험을 통하여 그 안정성을 확인하였다.
본 연구는 디지털 격차가 노인의 디지털 일상생활에 미치는 영향력을 분석하는 것이다. 60세이상의 노년층을 대상으로 디지털 격차에 대한 적응경향성을 측정하여 집단으로 구분하였고, 디지털 의사소통 기술, 디지털 자신감, 디지털 자기통제감, 디지털 생활만족을 측정하였다. 연구모형은 교차설계 모형과 이중매개모형을 적용하였다. 연구결과, 첫째, 디지털 격차에 대한 적응 접근성이 높은 집단이 전반적인 디지털 일상생활에 긍정적인 영향을 미치는 것으로 나타났다. 둘째, 디지털 격차에 대한 적응 활동성이 높은 집단이 디지털 자기통제감에 긍정적인 영향을 미치는 것으로 나타났다. 셋째, 디지털 의사소통 기술이 디지털 생활만족에 긍정적인 영향을 미치며, 디지털 자신감과 디지털 자기통제감은 매개역할을 하는 것으로 나타났다. 이러한 연구결과를 토대로 노년층의 디지털 격차에 대한 극복 전략에 대해 논의하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권11호
/
pp.5459-5473
/
2017
Recently, a tracking algorithm called the spatial-temporal context model has been proposed to locate a target by using the contextual information around the target. This model has achieved excellent results when the target undergoes slight occlusion and appearance changes. However, the target location in the current frame is based on the location in the previous frame, which will lead to failure in the presence of fast motion because of the lack of a prediction mechanism. In addition, the spatial context model is updated frame by frame, which will undoubtedly result in drift once the target is occluded continuously. This paper proposes two improvements to solve the above two problems: First, four possible positions of the target in the current frame are predicted based on the displacement between the previous two frames, and then, we calculate four confidence maps at these four positions; the target position is located at the position that corresponds to the maximum value. Second, we propose a target reliability criterion and design an adaptive threshold to regulate the updating speed of the model. Specifically, we stop updating the model when the reliability is lower than the threshold. Experimental results show that the proposed algorithm achieves better tracking results than traditional STC and other algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.