• 제목/요약/키워드: Adaptive Background Subtraction

검색결과 31건 처리시간 0.028초

Background Subtraction in Dynamic Environment based on Modified Adaptive GMM with TTD for Moving Object Detection

  • Niranjil, Kumar A.;Sureshkumar, C.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.372-378
    • /
    • 2015
  • Background subtraction is the first processing stage in video surveillance. It is a general term for a process which aims to separate foreground objects from a background. The goal is to construct and maintain a statistical representation of the scene that the camera sees. The output of background subtraction will be an input to a higher-level process. Background subtraction under dynamic environment in the video sequences is one such complex task. It is an important research topic in image analysis and computer vision domains. This work deals background modeling based on modified adaptive Gaussian mixture model (GMM) with three temporal differencing (TTD) method in dynamic environment. The results of background subtraction on several sequences in various testing environments show that the proposed method is efficient and robust for the dynamic environment and achieves good accuracy.

배경 분리 기반의 실시간 객체 추적을 위한 개선된 적응적 배경 혼합 모델 (An Improved Adaptive Background Mixture Model for Real-time Object Tracking based on Background Subtraction)

  • 김영주
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권6호
    • /
    • pp.187-194
    • /
    • 2005
  • 연속 영상을 이용하여 실시간으로 움직임 객체를 추출하고 추적하기 위해 배경분리(Background Subtraction) 기법을 주로 사용한다. 외부 환경에서는 조명 조건의 변화, 나무의 흔들림과 같은 반복적인 움직임 그리고 급격히 움직이는 객체 등과 같이 고려해야할 많은 환경 변화 요인들이 존재한다. 이러한 외부 환경의 변화를 적응적으로 반영하여 배경을 분리할 수 있는 배경 모델로는 주로 가우시안 혼합 모델 (GMM: Gaussian Mixture Model)이 적용되고 있으며, 실시간 성능 등을 개선시킨 적응적 가우시안 혼합 모델 등이 제안되어 사용되고 있다. 본 논문은 개선된 적응적 가우시안 혼합 모델을 적용하고 고정된 학습률 a(일반적으로 작은 값)을 사용함으로써 물체의 갑작스러운 움직임 등에 빠르게 적응하지 못하는 문제점을 해결하기 위해 가우시안 분포 수의 적응적 조절 기능과 픽셀 값의 분산 등을 이용하여 학습률 a값을 동적으로 제어하는 방법을 제안하고 성능을 평가하였다.

  • PDF

배경분리를 위한 개선된 적응적 가우시안 혼합모델에서의 동적 학습률 제어 (Dynamic Control of Learning Rate in the Improved Adaptive Gaussian Mixture Model for Background Subtraction)

  • 김영주
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.366-369
    • /
    • 2005
  • 연속 영상을 이용하여 실시간으로 움직임 객체를 추출하고 추적하기 위해 배경분리(Background Subtraction) 기법을 주로 사용한다. 외부 환경에서는 조명의 변화, 나무의 흔들림과 같은 반복적인 움직임 그리고 급격히 움직이는 객체 등과 같이 고려해야할 많은 환경 변화 요인들이 존재한다. 이러한 외부 환경의 변화를 적응적으로 반영하여 배경을 분리할 수 있는 배경 모델로는 주로 가우시안 혼합 모델(GMM: Gaussian Mixture Model)이 적용되고 있으며, 실시간 성능 등을 개선시킨 적응적 가우시안 혼합 모델 등이 사용되고 있다. 본 논문은 개선된 적응적 가우시안 혼합 모델을 적용하고 고정된 학습률 ${\alpha}$(일반적으로 작은 값)을 사용함으로써 물체의 갑작스러운 움직임 등에 빠르게 적응하지 못하는 문제점을 해결하기 위해 가우시안 분포 수의 적응적 조절 기능과 픽셀 값을 분산을 이용하여 학습률 ${\alpha}$값을 동적으로 제어하는 방법을 제안하고 성능을 평가하였다.

  • PDF

Adaptive Background Subtraction Algorithm with Auto Brightness Control for Consumer-type Cameras

  • Thongkamwitoon T.;Aramvith S.;Chalidabhongse T. H.
    • 방송공학회논문지
    • /
    • 제10권2호
    • /
    • pp.156-165
    • /
    • 2005
  • This paper presents a new auto brighoess control algorithm fur adaptive background subtraction. The algorithm is designed to cope with the problem of auto-brightness adjustment feature of consumer-type cameras. The experimental results show the proposed method improves performance of the classification. This will be beneficial to many computer vision applications in term of reducing the cost of implementation and making them more available to the mass consumer market.

다중 구간 샘플링에 기반한 동적 배경 영상에 강건한 배경 제거 알고리즘 (A Robust Background Subtraction Algorithm for Dynamic Scenes based on Multiple Interval Pixel Sampling)

  • 이행기;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.31-36
    • /
    • 2020
  • Most of the background subtraction algorithms show good performance in static scenes. In the case of dynamic scenes, they frequently cause false alarm to "temporal clutter", a repetitive motion within a certain area. In this paper, we propose a robust technique for the multiple interval pixel sampling (MIS) algorithm to handle highly dynamic scenes. An adaptive threshold scheme is used to suppress false alarms in low-confidence regions. We also utilize multiple background models in the foreground segmentation process to handle repetitive background movements. Experimental results revealed that our approach works well in handling various temporal clutters.

Real-Time Vehicle License Plate Detection Based on Background Subtraction and Cascade of Boosted Classifiers

  • Sarker, Md. Mostafa Kamal;Song, Moon Kyou
    • 한국통신학회논문지
    • /
    • 제39C권10호
    • /
    • pp.909-919
    • /
    • 2014
  • License plate (LP) detection is the most imperative part of an automatic LP recognition (LPR) system. Typical LPR contains two steps, namely LP detection (LPD) and character recognition. In this paper, we propose an efficient Vehicle-to-LP detection framework which combines with an adaptive GMM (Gaussian Mixture Model) and a cascade of boosted classifiers to make a faster vehicle LP detector. To develop a background model by using a GMM is possible in the circumstance of a fixed camera and extracts the motions using background subtraction. Firstly, an adaptive GMM is used to find the region of interest (ROI) on which motion detectors are running to detect the vehicle area as blobs ROIs. Secondly, a cascade of boosted classifiers is executed on the blobs ROIs to detect a LP. The experimental results on our test video with the resolution of $720{\times}576$ show that the LPD rate of the proposed system is 99.14% and the average computational time is approximately 42ms.

혼잡한 환경에서 적응적 가우시안 혼합 모델을 이용한 배경의 학습 및 객체 검출 (Adaptive Gaussian Mixture Learning for High Traffic Region)

  • 박대용;김재민;조성원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권2호
    • /
    • pp.52-61
    • /
    • 2006
  • For the detection of moving objects, background subtraction methods are widely used. An adaptive Gaussian mixture model combined with probabilistic learning is one of the most popular methods for the real-time update of the complex and dynamic background. However, probabilistic learning approach does not work well in high traffic regions. In this paper, we Propose a reliable learning method of complex and dynamic backgrounds in high traffic regions.

A Study on Improving the Adaptive Background Method for Outdoor CCTV Object Tracking System

  • Jung, Do-Wook;Choi, Hyung-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권7호
    • /
    • pp.17-24
    • /
    • 2015
  • In this paper, we propose a method to solve ghosting problem. To generate adaptive background, using an exponentially decreasing number of frames, may improve object detection performance. To extract moving objects from the background by using a differential image, detection error may be caused by object rotations or environmental changes. A ghosting problem can be issue-driven when there are outdoor environmental changes and moving objects. We studied that a differential image by adaptive background may reduce the ghosting problem. In experimental results, we test that our method can solve the ghosting problem.

움직이는 카메라를 위한 신뢰도 기반의 배경 제거 알고리즘 (Confidence-based Background Subtraction Algorithm for Moving Cameras)

  • 문혁;이복주;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.30-35
    • /
    • 2017
  • Moving object segmentation from a nonstationary camera is a difficult problem due to the motion of both camera and the object. In this paper, we propose a new confidence-based background subtraction technique from moving camera. The method is based on clustering of motion vectors and generating adaptive multi-homography from a pair of adjacent video frames. The main innovation concerns the use of confidence images for each foreground and background motion groups. Experimental results revealed that our confidence-based approach robustly detect moving targets in sequences taken by a freely moving camera.

  • PDF

경비용 로봇을 위한 전방향 카메라 장치 설계 (Omnidirectional Camera System Design for a Security Robot)

  • 김길수;도용태
    • 대한임베디드공학회논문지
    • /
    • 제3권2호
    • /
    • pp.74-81
    • /
    • 2008
  • This paper describes a low-cost omnidirectional camera system designed for the intruder detection capability of a security robot. Moving targets on sequential images are detected first by an adaptive background subtraction technique, and the targets are identified as intruders if they fail to enter a password within a preset time. A warning message is then sent to the owner's mobile phone. The owner can check scene pictures posted by the system on the web. The system developed worked well in experiments including a situation when the indoor lighting was suddenly changed.

  • PDF