• Title/Summary/Keyword: Adaptive Analysis Method

Search Result 959, Processing Time 0.024 seconds

Adaptive Mesh Generation in Large Deformation Analysis of Shell Structures with Advancing Front Method (Advancing Front Method를 이용한 대변형 쉘 구조물의 적응적 유한요소 자동생성법)

  • 장창두;정진우;문성춘
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.447-455
    • /
    • 1999
  • An adaptive mesh generation scheme is developed for effective non-linear analysis of the shell structures under large deformation. In particular, based on a posteriori error estimation, remeshing method on each load step is of primary interest here. An advancing front method, called paving method, is adopted for remeshing. It can be known that the adaptive mesh generation using contours of spacing values obtained from stress errors has an advantage in the adaptive analysis of the shell structures.

  • PDF

A new structural reliability analysis method based on PC-Kriging and adaptive sampling region

  • Yu, Zhenliang;Sun, Zhili;Guo, Fanyi;Cao, Runan;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.271-282
    • /
    • 2022
  • The active learning surrogate model based on adaptive sampling strategy is increasingly popular in reliability analysis. However, most of the existing sampling strategies adopt the trial and error method to determine the size of the Monte Carlo (MC) candidate sample pool which satisfies the requirement of variation coefficient of failure probability. It will lead to a reduction in the calculation efficiency of reliability analysis. To avoid this defect, a new method for determining the optimal size of the MC candidate sample pool is proposed, and a new structural reliability analysis method combining polynomial chaos-based Kriging model (PC-Kriging) with adaptive sampling region is also proposed (PCK-ASR). Firstly, based on the lower limit of the confidence interval, a new method for estimating the optimal size of the MC candidate sample pool is proposed. Secondly, based on the upper limit of the confidence interval, an adaptive sampling region strategy similar to the radial centralized sampling method is developed. Then, the k-means++ clustering technique and the learning function LIF are used to complete the adaptive design of experiments (DoE). Finally, the effectiveness and accuracy of the PCK-ASR method are verified by three numerical examples and one practical engineering example.

Eigenvalue Analysis of a Membrane Using the Multiscale Adaptive Wavelet-Galerkin Method (멀티스케일 적응 웨이블렛-갤러킨 기법을 이용한 박막 고유치 문제 해석)

  • Yi, Yong-Sub;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.251-258
    • /
    • 2004
  • Since the multiscale wavelet-based numerical methods allow effective adaptive analysis, they have become new analysis tools. However, the main applications of these methods have been mainly on elliptic problems, they are rarely used for eigenvalue analysis. The objective of this paper is to develop a new multiscale wavelet-based adaptive Galerkin method for eigenvalue analysis. To this end, we employ the hat interpolation wavelets as the basis functions of the finite-dimensional trial function space and formulate a multiresolution analysis approach using the multiscale wavelet-Galerkin method. It is then shown that this multiresolution formulation makes iterative eigensolvers very efficient. The intrinsic difference-checking nature of wavelets is shown to play a critical role in the adaptive analysis. The effectiveness of the present approach will be examined in terms of the total numbers of required nodes and CPU times.

Remeshing techniques for r-adaptive and combined h/r-adaptive analysis with application to 2D/3D crack propagation

  • Askes, H.;Sluys, L.J.;de Jong, B.B.C.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.475-490
    • /
    • 2001
  • Remeshing strategies are formulated for r-adaptive and h/r-adaptive analysis of crack propagation. The relocation of the nodes, which typifies r-adaptivity, is a very cheap method to optimise a given discretisation since the element connectivity remains unaltered. However, the applicability is limited. To further improve the finite element mesh, a combined h/r-adaptive method is proposed in which h-adaptivity is applied whenever r-adaptivity is not capable of further improving the discretisation. Two and three-dimensional examples are presented. It is shown that the r-adaptive approach can optimise a discretisation at minimal computational costs. Further, the combined h/r-adaptive approach improves the performance of a fully r-adaptive technique while the number of h-remeshings is reduced compared to a fully h-adaptive technique.

Adaptive Finite Element Analysis of 2-D Plane Problems Using the R-P version (R-P법에 의한 이차원 평면문제의 적응 유한요소 해석)

  • Chung, Sang-Wook;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.345-350
    • /
    • 2000
  • Adaptive finite element analysis, which its solution error meets with the user defined allowable error, is recently used far improving reliability of finite element analysis results. This adaptive analysis is composed of two procedures; one is the error estimation of an analysis result and another is the reconstruction of finite elements. In the rp-method, an element size is controlled by relocating of nodal positions(r-method) and the order of an element shape function is determined by the hierarchical polynomial(p-method) corresponding to the element solution error. In order to show the effectiveness and accuracy of the suggested rp-method, various numerical examples were analyzed and these analysis results were examined by comparing with those obtained by the existed methods. As a result of this study, following conclusions are obtained. (1) rp-method is more accurate and effective than the r- and p-method. (2) The solution convergency of the rp-method is controlled by means of the iterative calculation numbers of the r- and p- method each other.

  • PDF

Adaptive Analysis Methods for the Accuracy Control of Finite Element Solutions (유한요소해의 정확도 조절을 위한 적응해석법)

  • Oh, H.S;Lee, D.I;Choi, J.H;Lim, J.K
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2067-2077
    • /
    • 1996
  • In adaptive finite element analysis, r- and h-methods are generally used on the basis of a discretization error estimator. In this paper, an rh-method is proposed as a new adaptive method which can improve the adaptivity performance by using both of them. This suggested rh-method moves nodal coordinates of initially given model to adjust element discretization errors and thereafter performes the h-method tdo obtain the specified accuracy of finite element solutions. Numerical experiments for various plane problems were performed using 4-noded isoparametric quadrilateral elements. As a result, the rh-method has been shown to be an accurate and efficient adaptive analysis method to obtain as improved solution.

Three Dimensional Finite Element Analysis of Filling Stage in Casting Process Using Adaptive Grid Refinement Technique (3차원 적응 격자 세분화를 이용한 주조 공정의 충전 해석)

  • Kim Ki Don;Jeong Jun Ho;Yang Dong Yol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.568-576
    • /
    • 2005
  • A 3-D finite element model combined with a volume tracking method is presented in this work to simulate the mold filling for casting processes. Especially, the analysis involves an adaptive grid method that is created under a criterion of element categorization of filling states and locations in the total region at each time step. By using an adaptive grid wherein the elements, finer than those in internal and external regions, are distributed at the surface region through refinement and coarsening procedures, a more efficient analysis of transient fluid flow with free surface is achieved. Adaptive grid based on VOF method is developed in tetrahedral element system. Through a 3-D analysis of the benchmark test of the casting process, the efficiency of the proposed adaptive grid method is verified. Developed FE code is applied to a typical industrial part of the casting process such as aluminum road wheel.

Adaptive Finite Element Analysis of 2-D Plane Problems Using the rp-Method (절점이동과 단항증가법에 의한 이차원 평면문제의 적응 유한요소 해석)

  • 박병성;임장근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Adaptive finite element analysis, in which its solution error meets with the user defined allowable error, is recently used to improve the reliability of finite element analysis results. This adaptive analysis is composed of two procedures; one is the error estimation of an analysis result and the other is the reconstruction of finite elements. In the (p-method, an element size is controlled by relocating of nodal positions (r-method) and the order of an element shape function is determined by the hierarchical polynomial (p-method) corresponding to the clement solution error by the enhanced SPR. In order to show the effectiveness and the accuracy of the suggested rp-method, various numerical examples were analyzed and these analysis results were examined by comparing with those obtained by the existed methods.

Dynamically Adaptive Finite Element Mesh Generation Schemes

  • Yoon, Chong-Yul;Park, Joon-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.659-665
    • /
    • 2010
  • The finite element method(FEM) is proven to be an effective approximate method of structural analysis if proper element types and meshes are chosen, and recently, the method is often applied to solve complex dynamic and nonlinear problems. A properly chosen element type and mesh yields reliable results for dynamic finite element structural analysis. However, dynamic behavior of a structure may include unpredictably large strains in some parts of the structure, and using the initial mesh throughout the duration of a dynamic analysis may include some elements to go through strains beyond the elements' reliable limits. Thus, the finite element mesh for a dynamic analysis must be dynamically adaptive, and considering the rapid process of analysis in real time, the dynamically adaptive finite element mesh generating schemes must be computationally efficient. In this paper, a computationally efficient dynamically adaptive finite element mesh generation scheme for dynamic analyses of structures is described. The concept of representative strain value is used for error estimates and the refinements of meshes use combinations of the h-method(node movement) and the r-method(element division). The shape coefficient for element mesh is used to correct overly distorted elements. The validity of the scheme is shown through a cantilever beam example under a concentrated load with varying values. The example shows reasonable accuracy and efficient computing time. Furthermore, the study shows the potential for the scheme's effective use in complex structural dynamic problems such as those under seismic or erratic wind loads.

An Analysis of Web-Based Adaptive Math Learning Program Components (웹 기반 맞춤형 수학 학습 프로그램 구성 요소 분석)

  • Huh, Nan
    • East Asian mathematical journal
    • /
    • v.34 no.4
    • /
    • pp.451-462
    • /
    • 2018
  • This study analyzed the learning components of the web-based adaptive math learning programs in order to develop adaptive math learning program using artificial intelligence. The components of the web-based adaptive math learning program set for analysis are classified into learning process presentation, concept learning, problem presentation, problem solving process, and learning result processing then analyzed three programs. As a result of analysis, the typical characteristic of components is that it uses a method of repeatedly presenting the same type of problem in order to learn one concept.