• Title/Summary/Keyword: Acyl-CoA Oxidase

Search Result 19, Processing Time 0.027 seconds

Crystal Structure of Acyl-CoA Oxidase 3 from Yarrowia lipolytica with Specificity for Short-Chain Acyl-CoA

  • Kim, Sangwoo;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.597-605
    • /
    • 2018
  • Acyl-CoA oxidases (ACOXs) play important roles in lipid metabolism, including peroxisomal fatty acid ${\beta}$-oxidation by the conversion of acyl-CoAs to 2-trans-enoyl-CoAs. The yeast Yarrowia lipolytica can utilize fatty acids as a carbon source and thus has extensive biotechnological applications. The crystal structure of ACOX3 from Y. lipolytica (YlACOX3) was determined at a resolution of $2.5{\AA}$. It contained two molecules per asymmetric unit, and the monomeric structure was folded into four domains; $N{\alpha}$, $N{\beta}$, $C{\alpha}1$, and $C{\alpha}2$ domains. The cofactor flavin adenine dinucleotide was bound in the dimer interface. The substrate-binding pocket was located near the cofactor, and formed at the interface between the $N{\alpha}$, $N{\beta}$, and $C{\alpha}1$ domains. Comparisons with other ACOX structures provided structural insights into how YlACOX has a substrate preference for short-chain acyl-CoA. In addition, the structure of YlACOX3 was compared with those of medium- and long-chain ACOXs, and the structural basis for their differences in substrate specificity was discussed.

Geness for degradation of storage oil and their application to oil biotechnology

  • Nishimura, Mikio;Hayashi, Makoto;Kato, Akira;Mano, Shoji;Hayashi, Hiroshi;Yamaguchi, Katushi;Nito, Kazumasa;Fukao, Youichiro
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.37-40
    • /
    • 1999
  • cDNAs for long- and short-chain acyl-CoA oxidases in fatty acid $\beta$-oxidation were isolated and were characterized their enzymatical and molecular properties. Both oxidases were exclusively localized in glyoxysomes, indicating that glyoxysomes can completely metabolize fatty acids to acyl-CoA by their cooperative action. In order to clarify the regulatory mechanisms underlying degradation of storage oil, we tried to obtain glyoxysome-deficient mutants of Arabidopsis. We screened 2,4-dichlorophenoxybutyric acid (2,4-DB) mutants of Arabidopsis which have defects in glyoxysomal fatty acid $\beta$-oxidation. Four mutants can be classified as carrying alleles at three independent loci, which we designated pedl, ped2, and ped3, respectively (where ped stands for peroxisome defective). The characteristics of these ped mutants are described.

  • PDF

Characterization of Acyl-CoA Oxidases from the Lipolytic Yeast Candida aaseri SH14

  • Ibrahim, Zool Hilmi;Bae, Jung-Hoon;Sung, Bong Hyun;Kim, Mi-Jin;Rashid, Ahmad Hazri Ab;Sohn, Jung-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.949-954
    • /
    • 2022
  • The lipolytic yeast Candida aaseri SH14 contains three Acyl-CoA oxidases (ACOXs) which are encoded by the CaAOX2, CaAOX4, and CaAOX5 genes and catalyze the first reaction in the β-oxidation of fatty acids. Here, the respective functions of the three CaAOX isozymes were studied by growth analysis of mutant strains constructed by a combination of three CaAOX mutations in minimal medium containing fatty acid as the sole carbon source. Substrate specificity of the CaAOX isozymes was analyzed using recombinant C. aaseri SH14 strains overexpressing the respective genes. CaAOX2 isozyme showed substrate specificity toward short- and medium-chain fatty acids (C6-C12), while CaAOX5 isozyme preferred long-chain fatty acid longer than C12. CaAOX4 isozyme revealed a preference for a broad substrate spectrum from C6-C16. Although the substrate specificity of CaAOX2 and CaAOX5 covers medium- and long-chain fatty acids, these two isozymes were insufficient for complete β-oxidation of long-chain fatty acids, and therefore CaAOX4 was indispensable.

The Effects of Docosahexaenoic Acid Oil and Soybean Oil on the Expression of Lipid Metabolism Related mRNA in Pigs

  • Liu, B.H.;Wang, Y.C.;Kuo, C.F.;Cheng, W.M.;Shen, T.F.;Ding, Shih-Torng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1451-1456
    • /
    • 2005
  • To study the acute effect of dietary docosahexaenoic acid (DHA, $C_{22:6}$) on the expression of adipocyte determination and differentiation-dependent factor 1 (ADD1) mRNA in pig tissues, weaned, crossbred pigs (28 d of age) were fed with either 10% (on as-fed basis) tallow (high stearic acid), soybean oil (high linoleic acid), or high DHA algal oil for 2 d. The plasma and liver DHA reflected the composition of the diet. The adipose tissue and skeletal muscle DHA did not reflect the diet in the short term feeding. The results also showed that the diet containing 10% algal DHA oil significantly decreased the total plasma cholesterol (39%) and triacylglycerol (TG; 46%) in the pigs. Soybean oil significantly decreased plasma TG (13.7%; p<0.05), but did not have an effect on plasma cholesterol. The data indicate that different dietary fatty acid compositions have different effects on plasma lipids. The ADD1 mRNA was decreased (p<0.05) in the liver of DHA oil-treated pigs compared with the tallow-treated pigs. The diets did not have significant effect on the ADD1 mRNA in adipose tissue. Addition of algal DHA oil in the diet increased acyl CoA oxidase (ACO) mRNA concentration in the liver, suggesting that dietary DHA treatment increases peroxisomal fatty acid oxidation in the liver. However, dietary soybean oil supplementation did not affect mRNA concentrations of ADD1 or ACO in the tissues of pigs. Because ADD1 increases the expression of genes associated with lipogenesis, and ACO is able to promote fatty acid oxidation, feeding DHA oil may change the utilization of fatty acids through changing the expression of ADD1 and ACO. Therefore, feeding pigs with high DHA may lead to lower body fat deposition.

Liver PPAR${\alpha}$ and UCP2 are Involved in the Regulation of Ovariectomy-Induced Adiposity and Steatosis by Swim Training

  • Jeong, Sun-Hyo;Yoon, Mi-Chung
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.239-246
    • /
    • 2010
  • It is suggested that ovariectomy induces body weight gain primarily in the form of adipose tissue in rodents. Since liver peroxisome proliferator-activated receptor ${\alpha}$ (PPAR${\alpha}$) and uncoupling 2 (UCP2) are involved in the regulation of energy expenditure, it was investigated whether swim training regulates ovariectomy-induced adiposity and steatosis through liver PPAR${\alpha}$ and UCP2 activation in female ovariectomized mice, an animal model of postmenopausal women. Swim-trained mice had significantly decreased adipose tissue weights compared with sedentary control mice. Histological analysis showed that hepatic lipid accumulation was inhibited by swim training. Concomitantly, swim training significantly increased mRNA levels of PPAR${\alpha}$ and its target genes responsible for peroxisomal fatty acid ${\beta}$-oxidation, such as acyl-CoA oxidase, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase and thiolase in the liver. Moreover, swim training induced the mRNA expression of UCP2. These results suggest that swim training can effectively prevent adiposity and steatosis caused by ovariectomy, in part through activation of liver PPAR${\alpha}$ and UCP2 in female obese mice.

Effects of Polygonatum sibiricum rhizome extract on lipid and energy metabolism in high-fat diet-induced obese mice (고지방 식이 유도 비만 마우스 모델에서 황정 추출물의 지방질 및 에너지 대사 관련 유전자에 대한 효능 연구)

  • Jeon, Woo-Jin;Kim, Ji-Young;Oh, Ik-Hoon;Lee, Do-Seop;Shon, Suh-Youn;Seo, Yun-Ji;Yeon, Seung-Woo;Kang, Jae-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.192-202
    • /
    • 2017
  • In this study, factors involved in lipid and energy metabolism following treatment with ethanolic extract of the Polygonatum sibiricum rhizome (ID1216) were evaluated in high-fat diet-induced obese mice. ID1216-treated mice showed a significant reduction in weight gain compared to non-treated mice. ID1216 treatment increased the protein levels of AMP-dependent protein kinase, sirtuin1, peroxisome proliferator-activated receptor ${\gamma}$ coactivator 1-${\alpha}$ ($PGC1{\alpha}$), peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) and uncoupling proteins in the adipose tissue, liver and muscle compared to vehicle treatment. Analysis of downstream signals of the sirtuin1 $PGC1{\alpha}$-$PPAR{\alpha}$ pathway showed that ID1216 regulates the expression of ${\beta}$-oxidation related genes such as acyl-CoA oxidase, carnitine palmitoyltransferase1, acyl-CoA dehydrogenase and adipocyte protein 2. In addition, ID1216 increased the expression of adipose triglyceride lipase. These results suggest that ID1216 has anti-obesity effects by regulating the genes involved thermogenesis, ${\beta}$-oxidation and lipolysis in a diet-induced obesity model.

Antihyperlipidemic Effect of Ginsenoside Rg1 in Type 2 Diabetic Mice (제2형 당뇨병 모델 마우스에서 ginsenoside Rg1의 항당뇨 효과)

  • Park, Jae-Hong;Lee, Ji-Youn;Yeo, Ji-Young;Nam, Jeong-Su;Jung, Myeong-Ho
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.932-938
    • /
    • 2011
  • Ginsenoside Rg1 is a pharmacologically active component isolated from ginseng. The goal of this study was to clarify the beneficial effects of Rg1 on glucose and lipid metabolism in diabetic animals (db/db mice). To accomplish this, ten week old db/db mice were administered 10 mg/kg of Rg1 for 15 days. Rg1 did not influence the weight of db/db mice when compared with vehicle-treated db/db mice. The administration of Rg1 lowered fasting plasma glucose, and improved glucose tolerance. Importantly, Rg1 markedly reduced both plasma triglyceride and free fatty acids, and increased high-density lipoprotein cholesterol (HDL-C) concentrations in db/db mice. Rg1 activated promoter activity of chimeric GAL4-PPAR${\alpha}$ reporter and increased expression of peroxisome proliferator-activated receptor alpha (PPAR${\alpha}$) target genes such as carnitine palmitoyltransferase-1 (CPT-1) and acyl-CoA oxidase (ACO), which are involved in fatty acid oxidation. These findings indicated that improvement of lipid profiles by Rg1 may be associated with increased fatty acid oxidation via PPAR${\alpha}$ activation. Taken together, these results suggest that Rg1 could have beneficial effects for controlling hyperglycemia and hyperlipidemia associated with type 2 diabetes.

Troglitazone Lowers Serum Triglycerides with Sexual Dimorphism in C57BL/6J Mice

  • Jeong Sun-Hyo;Yoon Mi-Chung
    • Biomedical Science Letters
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2006
  • Thiazolidinediones (TZDs) are widely used antidiabetic drugs that activate the nuclear peroxisome proliferator-activated receptor ${\gamma}(PPAR{\gamma})$, and thereby improve the metabolic abnormalities linking hypertriglyceridemia to diabetes, hyperglycemia, insulin resistance, and cardiovascular disease. To determine whether the $PPAR{\gamma}$ ligand troglitazone regulates lipid metabolism with sexual dimorphism, we examined the effects of troglitazone on circulating lipids, body weight and the expression of hepatic genes responsible for lipid metabolism in both sexes of C57BL/6J mice. Compared to mice fed a low fat control diet, both sexes of mice fed a troglitazone-treated low fat diet for 14 weeks did not exhibit changes in body weight gain, serum total cholesterol, HDL-cholesterol and LDL-cholesterol levels. However, serum triglycerides were significantly reduced in both sexes of mice, although these effects were more pronounced among males. Furthermore, troglitazone regulated the expression of hepatic genes critical for lipid and lipoprotein metabolism, the magnitudes of which were much higher in males compared to females, as evidenced by results for increased acyl-CoA oxidase and decreased apolipoprotein C-III mRMA levels. These results suggest that $PPAR{\gamma}$ activator troglitazone may exert sexually dimorphic control of serum triglycerides in part through the differential activation of $PPAR{\gamma}$ in liver between male and female mice.

  • PDF

Oxidation of fatty acid may be enhanced by a combination of pomegranate fruit phytochemicals and acetic acid in HepG2 cells

  • Kim, Ji Yeon;Ok, Elly;Kim, You Jin;Choi, Kyoung-Sook;Kwon, Oran
    • Nutrition Research and Practice
    • /
    • v.7 no.3
    • /
    • pp.153-159
    • /
    • 2013
  • We investigated whether the combination of phytochemicals and acetic acid in the form of fruit vinegar provides an additive effect on changes of mRNA levels related to fatty acid oxidation in human hepatocyte (HepG2). Among the seven fruit vinegars (Rubuscoreanus, Opuntia, blueberry, cherry, red ginseng, mulberry, and pomegranate) studied, treatment of HepG2 with pomegranate vinegar (PV) at concentrations containing 1 mM acetic acid showed the highest in vitro potentiating effect on the mRNA expression levels of peroxisome proliferator-activated receptor ${\alpha}$, carnitinepalmitoyl transferase-1, and acyl-CoA oxidase compared to the control group (P < 0.05). Reversed-phase liquid chromatography in combination with quadrupole time-of-flight mass spectrometry analysis revealed four potential compounds (punicalagin B, ellagic acid, and two unidentified compounds) responsible for altered gene expression in HepG2 cells treated with PV as compared with the others. Further investigations are warranted to determine if drinking PV beverages may help to maintain a healthy body weight in overweight subjects.