• 제목/요약/키워드: Acute Exposure Guideline Level

검색결과 7건 처리시간 0.018초

화학사고 대응을 위한 시간별 급성노출기준 참고치 산정 - 폼알데하이드 사례 - (Estimation of Temporal Acute Exposure Guideline Levels for Emergency Response - A Brief Case using Formaldehyde -)

  • 김은채;조용성;이청수;양원호;황승율;박지훈
    • 한국환경보건학회지
    • /
    • 제47권2호
    • /
    • pp.166-174
    • /
    • 2021
  • Objectives: This study aimed to provide temporal Acute Exposure Guideline Levels (AEGL) for a hazardous substance as a pilot study. Methods: As one of the substances designated by the Korea Ministry of Environment as requiring preparations for potential accidents, formaldehyde was selected to estimate the AEGLs. The calculation was based on Haber's formula (Cn×t=k) using valid toxicity data (for humans/animals). A total of 96 points of AEGL levels were provided using an interval of five minutes over eight hours. Results: The AEGL-1 and 2 values were constant for the entire exposure duration at 0.9 ppm and 14 ppm, respectively. The values were obtained from clinical/animal tests, and the adaptation effect after a given exposure duration was also considered. AEGL-3 was based on animal toxicity data, and it was estimated from 127 ppm for the initial five minutes to 35 ppm for eight hours. Conclusions: More specific AEGL levels for formaldehyde could be obtained in this study using toxicity data with Haber's formula. Based on this methodology, it would be also possible to estimate AEGL levels that can be used at the scene of a chemical accident for other substances requiring preparation for potential accidents.

화학사고 초기대응 소방대 보호를 위한 독성농도(T-LOC) 끝점거리 연구 (Toxic Concentration(T-LOC) Endpoint Distance Study for Fire Brigade Protection in Response to Chemical Accidents)

  • 윤종찬;조철희;원정훈
    • 한국안전학회지
    • /
    • 제38권6호
    • /
    • pp.60-71
    • /
    • 2023
  • The purpose of this study is to propose a quantitative toxicity endpoint distance suitable for the initial response of firefighters by comparing and analyzing the commonly applied toxic level of concern (T-LOC), specifically emergency response planning guidelines (ERPG), acute exposure guideline levels (AEGL), and immediately dangerous to life or health (IDLH). This is to protect the fire brigade, which responds to toxic chemical accidents first during the golden time. Using areal locations of hazardous atmospheres, a damage prediction program, the amount of leakage for both acidic and basic substances, along with the endpoint distance, were analyzed for alternative accident and worst-case accident scenarios. The results showed that the toxicity endpoint distance, serving as a compromise between Level-3 and Level-2 of T-LOC, was longer than ERPG-3 and shorter than ERPG-2 with IDLH, while its values were analyzed in the order of ERPG-2, AEGL-2, IDLH, AEGL-3, and ERPG-3. It is suggested that the application of IDLH in an emergency (red card) and ERPG-2 endpoint distance in a non-emergency (non-red card) can be utilized for the initial response of the fire brigade.

Indoor Exposure and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) via Public Facilities PM2.5, Korea (II)

  • Kim, Ho-Hyun;Lee, Geon-Woo;Yang, Ji-Yeon;Jeon, Jun-Min;Lee, Woo-Seok;Lim, Jung-Yun;Lee, Han-Seul;Gwak, Yoon-Kyung;Shin, Dong-Chun;Lim, Young-Wook
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권1호
    • /
    • pp.35-47
    • /
    • 2014
  • The purpose of the study is to evaluate the pollution level (gaseous and particle phase) in the public facilities for the PAHs, non-regulated materials, forecast the risk level by the health risk assessment (HRA) and propose the guideline level. PAH assessments through sampling of particulate matter of diameter < 2.5 ${\mu}m$ ($PM_{2.5}$). The user and worker exposure scenario for the PAHs consists of 24-hour exposure scenario (WIES) assuming the worst case and the normal exposure scenario (MIES) based on the survey. This study investigated 20 PAH substances selected out of 32 substances known to be carcinogenic or potentially carcinogenic. The risk assessment applies major toxic equivalency factor (TEF) proposed from existing studies and estaimates individual Excess Cancer Risk (ECR). The study assesses the fine dusts ($PM_{2.5}$) and the exposure levels of the gaseous and particle PAH materials for 6 spots in each 8 facility, e.g. underground subway stations, child-care facilities, elderly care facilities, super market, indoor parking lot, terminal waiting room, internet caf$\acute{e}$ (PC-rooms), movie theater. For internet caf$\acute{e}$ (PC-rooms) in particular, that marks the highest $PM_{2.5}$ concentration and the average concentration of 10 spots (2 spots for each cafe) is 73.3 ${\mu}g/m^3$ (range: 6.8-185.2 ${\mu}g/m^3$). The high level of $PM_{2.5}$ seen in internet cafes was likely due to indoor smoking in most cases. For the gaseous PAHs, the detection frequency for 4-5 rings shows high and the elements with 6 rings shows low frequency. For the particle PAHs, the detection frequency for 2-3 rings shows low and the elements with 6 rings show high frequency. As a result, it is investigated that the most important PAHs are the naphthalene, acenaphthene and phenanthrene from the study of Kim et al. (2013) and this annual study. The health risk assessment demonstrates that each facility shows the level of $10^{-6}-10^{-4}$. Considering standards and local source of pollution levels, it is judged that the management standard of the benzo (a)pyrene, one of the PAHs, shall be managed with the range of 0.5-1.2 $ng/m^3$. Smoking and ventilation were considered as the most important PAHs exposure associated with public facility $PM_{2.5}$. This study only estimated for inhalation health risk of PAHs and focused on the associated cancer risk, while multiple measurements would be necessary for public health and policy.

Toxicological Effects of PFOS and PFOA on Earthworm, Eisenia fetida

  • Joung, Ki-Eun;Jo, Eun-Hye;Kim, Hyun-Mi;Choi, Kyung-Hee;Yoon, Jun-Heon
    • Environmental Analysis Health and Toxicology
    • /
    • 제25권3호
    • /
    • pp.181-186
    • /
    • 2010
  • Perfluorinated Compounds (PFCs) are anthropogenic compounds found in trace amounts in many environmental compartments far from areas of production. Along with the highly persistent nature of PFCs, there are increasing concerns over the potential adverse effects of them on the ecosystems. Most of highly fluorinated compounds degrade into PFOS and PFOA that are very stable compounds hard to break down. So, in this study, we tried to determine the toxicity of PFOS and PFOA in the terrestrial invertebrate. Acute toxicity test using earthworm, Eisenia fetida, was performed according to the OECD test guideline 207 (Earthworm, Acute Toxicity Tests). In the 14 day acute toxicity tests, the highest concentration causing no mortality and the lowest concentration causing 100% mortality of PFOS were 160 and 655 mg/kg (dry weight), respectively. And the highest concentration causing no mortality and the lowest concentration causing 100% mortality were 500 and 1,690 mg/kg (dry weight), respectively in the PFOA-exposure group. 14 day-LC50 values were estimated at the level of 365 and 1,000 mg/kg (dry weight) in the PFOS and PFOA-exposed group. These results indicate that under laboratory conditions PFOS is about 3 times more toxic to earthworms than PFOA. Based on known environmental concentrations of PFOS in the soil of Korea, which occur in the 0.42~0.73 ng/L range, there is no apparent risk to terrestrial invertebrate, earthworms. However, further work is required to investigate long-term effects on these and other terrestrial organisms.

Improvement Plan for Prevention Regulations to Improve Hazardous Material Safety Management

  • Seongju Oh;Jaewook Lee;Hasung Kong
    • International Journal of Advanced Culture Technology
    • /
    • 제11권3호
    • /
    • pp.346-357
    • /
    • 2023
  • The purpose of this study is to suggest improvement plans for prevention regulations by reflecting the toxicity, fire and explosion effects of hazardous materials factories and surrounding areas using an off-site consequence assessment program. Regarding the effects of the hydrogen cyanide leak accident, which is the 1st petroleum of the 4th class flammable liquid, Areal Locations of Hazardous Atmospheres (ALOHA) program was used to compare and analyze the extent of damage effects for toxicity, overpressure, and radiation. As a result, the toxicity was analyzed to exceed 5km in the area with Acute exposure guideline level (AEGL)-2 concentration or higher, the overpressure was 103m in the range of 1 psi or more, and the radiant heat was analyzed to be 724m in the range of 2kw/m2 or more. Toxicity and radiation affected the area outside the hazardous material storage area, but the overpressure was limited to the inside of the hazardous material storage area. Therefore, we propose to improve the safety management of hazardous materials by conducting a risk assessment for hazardous materials and reflecting the results in internal and external emergency response plans to prepare prevention regulations.

최근 불산 저장탱크에서의 가스 누출시 공정위험 및 결과영향 분석 (Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank)

  • Ko, JaeSun
    • 한국재난정보학회 논문집
    • /
    • 제9권4호
    • /
    • pp.449-461
    • /
    • 2013
  • 최근 발생한 경북 구미의 불산 누출 및 경남 울산의 염산 누출사고의 예와 같이 화학공장에서 발생되는 사고중대 부분은 저장탱크나 운송배관 및 플랜지호스 등의 손상에 의한 휘발성 유독성물질의 대량누출이며, 이 경우 누출된 지역의 자연환경과 대기 조건에 따른 유독성물질의 확산 거동이 인적, 물적 피해의 중요한 변수가 되기 때문에 위험성평가는 가장 중요한 관심 대상이 된다. 따라서 본 연구에서는 누출물질에 대한 대기 중 확산을 모사하기 위하여 불산 저장탱크에서 누출된 경우를 예제로 선택하여, 수치해석과 ALOHA(Areal Location of Hazardous Atmospheres)의 확산 시뮬레이션을 이용한 결과해석을 수행하였다. 먼저 공정위험분석으로 정성적 평가인 HAZOP(Hazard Operability) 결과를 살펴보면 첫째 공정흐름상(flow) 위험 요소로서 플렌지, 밸브와 호스의 균열 등 손상으로 인한 누출에 의한 운전지연 또는 독성가스누출 등이 발생할 수 있고, 둘째 온도, 압력, 부식으로부터는 화재, 질소공급과 압 그리고 탱크나 파이프 이음관의 내부 부식으로 인한 독성누출의 가능성이 높은 것으로 분석되었다. 다음 결과 영향분석 기법인 ALOHA를 운용한 결과를 살펴보면 Dense Gas Model에 대한 입력 자료값에 따라 미치는 결과 영향이 다소 차이가 있음을 발견하였으나 기상조건으로서 대기안정도 보다는 풍향 및 풍속이 가장 영향을 미치는 것으로 분석 되었다. 또한 풍속이 빠를수록 누출물질의 확산이 잘 일어났고, 수치해석결과인$LC_{50}$과 ALOHA의 AEGL-3(Acute Exposure Guidline Level)과 결과를 비교했을 때 확산길이는 다소 차이가 있지만 확산농도 측면에서는 액체와 증기누출인 경우에 있어서 거의 비슷한 결과를 보였다. 따라서 ALOHA 모델을 운영한 결과 각 시나리오별 경향은 상당히 일치함을 볼 수 있었다. 따라서 추후 수치해석과 확산모델링에 의한 예측농도를 국제적인 기준치인 IDLH(Immediately Dangerous to Life and Health), ERPG(Emergency Response Planning Guideline), AEGL(Acute Exposure Guidline Level)과 비교 함 으로서 독성 가스의 대한 완충거리를 결정 할 수 있고, 이와 같은 연구방법은 유독성물질 누출에 따른 위험성평가를 보다 효율적으로 수행하는데 도움을 줄 것이며, 지역사회 비상대응체계 수립 시 적절하게 활용할 수 있을 것이다.

한국인의 초과 방사선 암 위험도 평가에 근거한 국내원전의 안전목표치 설정 방법론 (Methodology on the Safety Goal Setting of Reactor Operation based on the Radiogenic Excess Cancer Risk in Korea)

  • 장시영;정운관
    • Journal of Radiation Protection and Research
    • /
    • 제24권3호
    • /
    • pp.131-142
    • /
    • 1999
  • 통계청에서 최근에 발표한 한국인 인구통계 자료와 미국 학술원 산하 '방사선의 생물학적 영향 위원회'의 최근 보고서(BEIR-V)의 수정 상대위험 투사모델을 적용하여 한국인의 방사선 피폭에 의한 초과 암발생 위험도를 평가하였다. 인구통계 자료로부터 유도한 사소위험도(trivial risk) 및 계산된 방사선유발 초과 암 위험도를 비교한 후 사소위험도의 수준으로 개인의 피폭선량을 유지하기 위한 국내 원전의 안전운영 목표치를 유도하였다. 방사선 피폭 유발 초과 암 위험도는 0.1 Gy의 단일피폭의 경우에는 $5.5{\times}10^{-3}$, 1.0 mGy/y로 생애연속 피폭 시엔 $3.7{\times}10^{-3}$인 것으로 평가되었다. 한국인의 모든 원인에 의한 기저사망 위험도 및 사소위험도는 각각 $5.2{\times}10^{-3}$$5.2{\times}10^{-6}$인 것으로 예상되었다. 한국인의 사소위험도 및 방사선 위험도 평가 결과로부터 유도한 국내 원전운영의 안전목표치는 대략 0.05 mSv/y로, 이 값은 미국 원자력규제위원회(USNRC)가 연방규제법 10CFR50 부록 I에서 제시하고 있는 ALARA 지침값과 거의 동일한 값으로 밝혀졌다.

  • PDF