• Title/Summary/Keyword: Actuator-driven Cover

Search Result 2, Processing Time 0.014 seconds

The Separating Cover Using an Explosive Bolt and Spring Lever (폭발볼트 및 스프링 레버를 이용한 발사관 분리식 덮개)

  • Choi, Won-Hong;Shin, Sang-Mok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.922-931
    • /
    • 2017
  • This research paper describes design procedures and those verification with multi-body dynamic analysis and an experiment for the development of an unprecedented type of canister cover, named as the separating cover. In order to overcome drawbacks from the precious rupture type and actuator driven cover, the separating cover was suggested. It has the simplest structure composed of the previously developed explosive bolt and a spring-lever driven system. First of all, mechanical feasibility with proposed design parameters based on mathematical modeling was confirmed through dynamic analysis and then its results showed good agreement with the followed empirical results acquired from a high speed camera. On top of that, a parametric study was conducted to identify the effect of each design parameter on separating performance. It is highly expected that this research contributes to provide military industries with a brand new canister cover having simplicity and cost efficiency and thus it will be very useful in MLRS(Multiple Launch Rocket System).

Micromirrors Driven by Detached Piezoelectric Microactuators For Low-voltage and Wide-angle Rotation (저전압 대회전을 위한 분리된 압전 구동기에 의한 미소거울)

  • Kim, Sung-Jin;Jin, Young-Hyun;Lee, Won-Chul;Nam, Hyo-Jin;Bu, Jong-Uk;Cho, Young-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.149-155
    • /
    • 2006
  • This paper presents a torsional micromirror detached from PZT actuators (TMD), whose rotational motion is achieved by push bars in the PZT actuators detached from the micromirror. The push bar mechanism is intended to reduce the bending, tensile and torsional constraints generated by the conventional bending bar mechanism, where the torsional micromirror is attached to the PZT actuators (TMA). We have designed, fabricated and tested prototypes of TMDs for single-axis and dual-axis rotation, respectively. The single-axis TMD generates the static rotational angle of $6.1^{\circ}$ at 16 VDC, which is 6 times larger than that of single-axis TMA, $0.9^{\circ}$. However, the rotational response curve of TMD shows hysteresis due to the static friction between the cover and the push bar in the PZT actuator. We have shown that 63.2% of the hysteresis is due to the static friction caused by the initial contact force of the PZT actuaor. Without the initial contact force, the rotational response curve of TMD shows linear voltage-angle characteristics. The dual-axis TMD generates the static rotational angles of $5.5^{\circ}$ and $4.7^{\circ}$ in x-axis and y-axis, respectively at 16 VDC. The measured resonant frequencies of dual-axis TMD are $2.1\pm0.1$ kHz in x-axis and $1.7\pm0.1$ kHz in y-axis. The dual-axis TMD shows stable operation without severe wear for 21.6 million cycles driven by 16 Vp-p sinusoidal wave signal at room temperature.