• 제목/요약/키워드: Actuator nonlinearity

검색결과 76건 처리시간 0.026초

주사터널링현미경을 위한 압전구동기의 비선형 모델링 (Nonlinear Modeling of Piezoelectric Actuators for Scanning Tunneling Microscopy)

  • 정승배;박준호;김승우
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2272-2283
    • /
    • 1994
  • In scanning tunneling microscopy, the piezoelectric actuator is popuilarly used in stacked type as it can provide remarkable positioning resolution and stiffness. The actuator, however, exhibits a considerable amount of hystereic nonlinearity, resulting in losses of overall measuring accuracy when a linear model is used for its control and calibration, In this study, a nonlinear model is proposed for predicting the precise relationship between the input connand voltage and the output displacement of the actuator itself, cross-coupled electrical behaviours of the driving circuit with the actuator, and mechanical characteristics of the driven components of the actuator. Finally experimental results prove that the nonlinear model enhances the measuring of scanning tunneling microscopy by an order ten in comparison with a conventional linear model.

Saturation Compensation of a DC Motor System Using Neural Networks

  • Jang, Jun-Oh;Ahn, Ihn-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.169-174
    • /
    • 2005
  • A neural networks (NN) saturation compensation scheme for DC motor systems is presented. The scheme that leads to stability, command following and disturbance rejection is rigorously proved. On-line weights tuning law, the overall closed loop performance and the boundness of the NN weights are derived and guaranteed based on Lyapunov approach. The simulation and experimental results show that the proposed scheme effectively compensate for saturation nonlinearity in the presence of system uncertainty.

An Open-Loop Method for Point-to-Point Positioning of a Piezoelectric Actuator

  • Henmi, Nobuhiko;Tanaka, Michihiko
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.9-13
    • /
    • 2007
  • We describe how to control a piezoelectric actuator using the open-loop method for point-to-point positioning. Since piezoelectric actuators have nonlinear characteristics due to hysteresis and creep between the input voltage and the resulting displacement, a special method is required to eliminate this nonlinearity for an open-loop drive. We have introduced open-loop driving methods for piezoelectric actuators in the past, which required a large input voltage and an initializing motion sequence to reset the state of the actuator before each movement. In this paper, we propose a new driving method that uses the initializing state. This method also utilizes the overshoot from both the upward and downward stepwise drives. Applying this method., we obtained precise point-to-point positioning without the influence of hysteresis and creep.

Localized evaluation of actuator tracking for real-time hybrid simulation using frequency-domain indices

  • Xu, Weijie;Guo, Tong;Chen, Cheng
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.631-642
    • /
    • 2017
  • Accurate actuator tracking plays an important role in real-time hybrid simulation (RTHS) to ensure accurate and reliable experimental results. Frequency-domain evaluation index (FEI) interprets actuator tracking into amplitude and phase errors thus providing a promising tool for quantitative assessment of real-time hybrid simulation results. Previous applications of FEI successfully evaluated actuator tracking over the entire duration of the tests. In this study, FEI with moving window technique is explored to provide post-experiment localized actuator tracking assessment. Both moving window with and without overlap are investigated through computational simulations. The challenge is discussed for Fourier Transform to satisfy both time domain and frequency resolution for selected length of moving window. The required data window length for accuracy is shown to depend on the natural frequency and structural nonlinearity as well as the ground motion input for both moving windows with and without overlap. Moving window without overlap shows better computational efficiency and has potential for future online evaluation. Moving window with overlap however requires much more computational efforts and is more suitable for post-experiment evaluation. Existing RTHS data from Network Earthquake Engineering Simulation (NEES) is utilized to further demonstrate the effectiveness of the proposed approaches. It is demonstrated that with proper window size, FEI with moving window techniques enable accurate localized evaluation of actuator tracking for real-time hybrid simulation.

비선형 견실 확정제어를 이용한 하드디스크 드라이브의 트랙추종제 (Track-Following Control of a Hard Disk Drive Actuator Using Nonlinear Robust Deterministic Control)

  • 위병열;강철구
    • 제어로봇시스템학회논문지
    • /
    • 제6권10호
    • /
    • pp.881-887
    • /
    • 2000
  • There are significant nonlinearities and uncertainties in hard disk drive actuators. In particular, pivot bearing nonlinearity and repeatable run-out make track-following control difficult as track density increases. In this paper, we design a robust track-following controller using a robust deterministic control scheme in which the pivot bearing nonlinearity and repeatable run-out are considered as uncertainties. Simulation study is conducted to evaluate the control performance of the proposed control scheme.

  • PDF

최대구매 제한을 갖는 비선형 생산분배계의 제어 (Control of nonlinear production-distribution process with limited decision policy)

  • 정상화;정상표;오용훈
    • 한국정밀공학회지
    • /
    • 제14권3호
    • /
    • pp.156-165
    • /
    • 1997
  • In the practical control systems, the dynamic range of actuatiors is limited(or saturated) when actuators are driven by sufficiently large signals. This gives rise to a nonlinearity as a result of actuator saturation. For example, the upper limit is imposed on productive capability by available factory space and capital equipment. Other examples of those kinds of actuator saturations are a maximum torque of the actua- ting motors and a throttle position in an aircraft speed control A saturating actuator may lead not only to a large overshoot during start-up and shut-down, but also to deterioration of the performance due to the uncertainties. That is, the speed of response is decreased and, possibly, the system output may not follow the lalrge reference inputs. The large-overshoot may be accompanied by rest wind-up(or called by integra- tor wind-up) which comes from controllers with integral action in saturation operation regions. Eventually, as the overshoot increases, the system has a limit cycle or becomes oscillatorily unstable. Due to these cir- cumstances, many studies are focused on the stability and robustness of the nonlinear systems with satu- rating actuator in the time-domain as well as in the frequency-domain.

  • PDF

$\mu$-합성법에 의한 유연한 조작기의 위치 및 진동제어 (Position and Vibration Control of a Flexible Manipulator Using $\mu$-Synthesis)

  • 박노철;양현석;박영필
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3186-3198
    • /
    • 1996
  • When a robot is to have contact with its enviornment, such as a medi-care robot, it would be advantageous for the robot to have a high compliance. For this reason, a robot having not only a flexible link but also an actuator with compliance, is desirable. This paper is concerned with the position and vibration control of 1 degree of freedom flexible robot using a pneumatic artificial muscle actuator. The dynamics of the manipulator assumed to be and Euler-Bernoulli beam are derived on the basis of the linear mathematical modle. Although this pneumatic artifical muscle actuator has many merits for the compliance robot, it is difficult to make an effective control scheme of this system because of ths nonlinearity and uncertainty on the dynamics of the actuator. By designing a controller using .mu.-synthesis, robust performance against measurement noise, various modeling uncertainties on the dynamics of the servo valve, actuator and mainpulator, is achieved. The effectiveness of the proposed control method is illustrated through simulations and experiments.

Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • 제8권5호
    • /
    • pp.433-447
    • /
    • 2011
  • The present paper addresses the nonlinear response of a FG square plate with two smart layers as a sensor and actuator under pressure. Geometric nonlinearity was considered in the strain-displacement relation based on the Von-Karman assumption. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness of the plate based on a power function. Electric potential was assumed as a quadratic function along the thickness direction and trigonometric function along the planar coordinate. By evaluating the mechanical and electrical energy, the total energy equation can be minimized with respect to amplitude of displacements and electrical potential. The effect of non homogenous index was investigated on the responses of the system. Obtained results indicate that with increasing the non homogenous index, the displacements and electric potential tend to an asymptotic value. Displacements and electric potential can be presented in terms of planar coordinate system. A linear analysis was employed and then the achieved results are compared with those results that are obtained using the nonlinear analysis. The effect of the geometric nonlinearity is investigated by using the comparison between the linear and nonlinear results. Displacement-load and potential-load curves verified the necessity of a nonlinear analysis rather than a linear analysis. Improvement of the previous results (by the linear analysis) through employing a nonlinear analysis can be presented as novelty of this study.

PZT 구동 스테이지의 위치 제어 성능 향상을 위한 제어기 설계 (Design of a Controller for Enhancing Positioning Performance of a PZT Driven Stage)

  • 박종성;정규원
    • 한국생산제조학회지
    • /
    • 제21권3호
    • /
    • pp.465-472
    • /
    • 2012
  • This paper describes a new robust control algorithm which can be used to enhance the positioning performance of an ultra-precision positioning system. The working table is supported by flexure hinges and moved by a piezoelectric actuator, whose position is measured by an ultra-precise linear encoder. The system dynamics is very complicated because the movement of the table is governed by both the mechanical characteristics and those of the PZT actuator. So that, the dynamics of the stage was modeled roughly in this paper, and the overall system was formularized to solve the small gain problem. A series of experiments was conducted in order to verify the usefulness of the proposed algorithm. From the experimental results, the positioning performance such as the accuracy, the rise time and the hysteresis nonlinearity were greatly improved.

공압인공근육로봇의 궤적추종의 적응제어 (Adaptive Control for Trajectory Tracking of a Manipulator with Pneumatic Artificial Muscle Actuators)

  • 박형욱;박노철;양현석;박영필
    • 한국정밀공학회지
    • /
    • 제14권5호
    • /
    • pp.100-107
    • /
    • 1997
  • A pneumatic artificial muscle type of actuator, which acts similar to human muscle, is developed recently. In this paper, an adaptive controller is presented for the trajectory tracking problem of a two-degree- of-freedom manipulator using two pairs of pneumatic artificial muscle actuators. Due to the nonlinearity and the uncertainty on the dynamics of the actuator, it is difficult to make the effective control schemes of this system. By the adaptive control law which inclueds a nonlinear "feedforward" term compensating paramet- ric uncertainties in addition to P.I.D. scheme, both golbal stability of the system and convergence of the tracking error are guaranted. The effectiveness of the proposed control method for the manipulator using this actuator is illustrated through experiments.periments.

  • PDF