• Title/Summary/Keyword: Actuator Control Scheme

Search Result 188, Processing Time 0.033 seconds

Implementation of an adaptive learning control algorithm for robot manipulators (로못 머니퓰레이터를 위한 적응학습제어 알고리즘의 구현)

  • 이형기;최한호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.632-637
    • /
    • 1992
  • Recently many dynamics control algorithms using robot dynamic equation have been proposed. One of them, Kawato's feedback error learning scheme requires neither an accurate model nor parameter estimation and makes the robot motion closer to the desired trajectory by repeating operation. In this paper, the feedback error learning algorithm is implemented to control a robot system, 5 DOF revolute type movemaster. For this purpose, an actuator dynamic model is constructed considering equivalent robot dynamics model with respect to actuator as well as friction model. The command input acquired from the actuator dynamic model is the sum of products of unknown parameters and known functions. To compute the control algorithm, a parallel processing computer, transputer, is used and real-time computing is achieved. The experiment is done for the three major link of movemaster and its result is presented.

  • PDF

Active Vibration Control of Fixed-Fixed Beam Using Piezoelectric Sensor and Actuator (압전 감지기와 작동기를 이용한 양단 고정보의 능동 진동 제어)

  • 한상보;곽문규;최이호;윤신일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.260-265
    • /
    • 1996
  • Active control of forced vibration response of a fixed-fixed beam implementing PZT sensor/actuator was conducted. Among various control scheme, PPF control was chosen due to its amenability and natural robustness. For a single frequency excitation, the PPF control provided reasonable controllability with the appropriate damping ratio of the compensator. Without increasing actuator voltage, best controllability can be obtained by the exact tuning between the natural frequency of the structure and the cut-off frequency of the compensator. Even the multi-frequency excitation, the PPF provided good vibration suppression for corresponding mode of interest, even though residual modes should be controlled with independent compensators for each mode.

  • PDF

Adaptive Fault Accommodation Control for Flexible-Joint Robots (유연 관절 로봇의 적응 고장 수용 제어)

  • Yoo, Sung Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.46-50
    • /
    • 2013
  • This paper proposes an adaptive fault accommodation control approach for flexible-joint (FJ) robots with multiple actuator faults. It is assumed that the value and occurrence time of multiple actuator faults are unknown. An adaptive fault accommodation control scheme with prescribed performance bounds, which characterize the convergence rate and maximum overshoot of tracking errors, is designed to accommodate the actuator faults. From the Lyapunov stability theorem, it is proved that all signals of the closed-loop system are semi-globally uniformly ultimately bounded and tracking errors are preserved within prescribed performance bounds regardless of actuator faults.

Hysteresis Compensation in Piezoceramic Actuators Through Preisach Model Inversion (Preisach 모델을 이용한 압전액츄에이터 이력 보상)

  • Chung C.Y.;Lee D.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1074-1078
    • /
    • 2005
  • In precision positioning applications, such as scanning tunneling microscopy and diamond turning machines [1], it is often required that actuators have nanometer resolution in displacement, high stiffness, and fast frequency response. These requirements are met by the use of piezoceramic actuators. A major limitation of piezoceramic actuators, however, is their lack of accuracy due to hysteresis nonlinearity and drift. The maximum error due to hysteresis can be as much as 10-15% of the path covered if the actuators are run in an open-loop fashion. Hence, the accurate control of piezoceramic actuators requires a control strategy that incorporates some form of compensation for the hysteresis. One approach is to develop an accurate model of the hysteresis and the use the inverse as a compensator. The Preisach model has frequently been employed as a nonlinear model for representing the hysteresis, because it encompasses the basic features of the hysteresis phenomena in a conceptually simple and mathematically elegant way. In this paper, a new numerical inversion scheme of the Preisach model is developed with an aim of compensating hysteresis in piezoceramic actuators. The inversion scheme is implemented using the first-order reversal functions and is presented in a recursive form. The inverted model is then incorporated in an open-loop control strategy that regulates the piezoceramic actuator and compensates for hysteretic effects. Experimental results demonstrate satisfactory regulation of the position of the piezoceramic actuator to the desired trajectories.

  • PDF

Saturation Compensation of a DC Motor System Using Neural Networks

  • Jang, Jun-Oh;Ahn, Ihn-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.169-174
    • /
    • 2005
  • A neural networks (NN) saturation compensation scheme for DC motor systems is presented. The scheme that leads to stability, command following and disturbance rejection is rigorously proved. On-line weights tuning law, the overall closed loop performance and the boundness of the NN weights are derived and guaranteed based on Lyapunov approach. The simulation and experimental results show that the proposed scheme effectively compensate for saturation nonlinearity in the presence of system uncertainty.

A study on the control surface/actuator fault detection, identification, and accommodation system for aircraft (항공기 제어면/구동장치 고장에 대한 진단규명 및 보완 제어시스템 설계에 관한 연구)

  • Song, Yong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.61-67
    • /
    • 2002
  • In this study a control surface/actuator fault detection, identification, and accommodation system for aircraft is designed. This fault tolerant control system tries to return aircraft to its stable trim condition in a short time. The control system is designed using neural networks with Extended Back Propagation Algorithm which shows fast convergence. F-4 aircraft with possible stabilator or aileron failure/stuck is simulated with the proposed scheme.

A New Approach to Structure of Aerodynamic Fin Control System for STT Missiles

  • Song, Chan-Ho;Lee, Yong-In;Kim, Seung-Hwan;Kim, Pil-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.537-541
    • /
    • 2003
  • In order to control the missiles by aerodynamics, control surfaces sometime called fins are used. Deflection angles of these fins are the right control variables of the aerodynamics, but aerodynamicists prefer to use analytic variables called aileron, elevator and rudder instead of these physical variables, because these three analytic variables dominantly influence on the roll, pitch and yaw channels of the missile maneuver, respectively, and each can be assumed a linear combination of four fin deflection angles. On that basis, roll, pitch and yaw autopilots for controlling the attitudes or lateral acceleration of the missile are designed, and as a consequence outputs of each autopilot are aileron, elevator and rudder commands, respectively. In the existing fin control scheme for the typical tail-fin controlled cruciform missiles, firstly these outputs are distributed to four fin defection commands, and after that four fins are actuated by fin controllers so that their deflections follow the commands. This paper shows that performance of such control schemes can be degraded significantly when fin actuators have certain physical constraints such as slew rate, voltage or current limit, uncertainty of actuator dynamics, and so on, and propose a new control scheme which alleviates such problems. This scheme can be widely applied to various fin actuation systems. But in this paper, for convenience, tail-fin controlled cruciform missile is taken as an example, and it is shown that a proposed control scheme gives better performance than the existing one.

  • PDF

The vibration isolating system using a magnetostrictive actuator (자기 변형 작동기를 이용한 진동 절연 시스템)

  • 정학근;박기환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.276-279
    • /
    • 1997
  • When a magnetostrictive material is exposed to a magnetic field, its geometry changes due to a magnetostrictive effect. The magnetostriction is analogous to the piezoeletricity. The displacement of the magnetostrictive material is proportional to the applied current while that of the piezoelectric material is proportional to the voltage. A magnetostrictive material generates large displacement and higher compressive force compared with a piezoeletric material. These advantages provide a good performance of a vibration isolation of a platform. In this work, it is applied to a driving actuator for vibration isolation of a platform. The properties of a magnetostrictive material are investigated in terms of hysteresis and displacement vs. applied current for a various preload. Modeling of the displacement of the vibration isolating actuator is performed as it behaves as a flow source. A sliding mode controller is designed to demonstrate the ability of the magnetostrictive actuator to reduce the vibration at the platform. The effectiveness of the proposed scheme is demonstrated through experimental works. The experimental results of the vibration of the platform axe presented in terms of time response and frequency response.

  • PDF

A Study on Actuator Fault Detection and Isolation in Airplanes using Fuzzy Logic (퍼지로직을 이용한 항공기 고장 검출 및 분리)

  • Lee Jang-Ho;Kim You-Dan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.140-148
    • /
    • 2004
  • Fault detection and isolation(FDI) and reconfigurable flight control system provide better survivability even though actuator faults occur. In this study, a new fault detection and isolation algorithm is proposed using fuzzy logic. When the FDI system detects the actuator fault, the fuzzy logic investigates the state variables to find which actuator has fault. Proposed fuzzy detection algorithm detect not only a single fault but also multiple faults. After detecting the fault, the reconfigurable flight control system begins operating for compensating the effects of the fault. A numerical simulation using six degree-of-freedom nonlinear aircraft model is performed to verity the performance of the proposed fault detection and isolation scheme.

Position and Vibration Control of Flexible 2-Link Robot Arm Using Piezoelectric Actuators and Sensors (압전 작동기 및 감지기를 이용한 유연한 2링크 로봇팔의 위치 및 진동제어)

  • Sin, Ho-Cheol;Choe, Seung-Bok;Kim, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.206-212
    • /
    • 2000
  • This paper presents a hybrid actuator scheme to actively control the end-point position and vibration of a two-link flexible robot arm. Control scheme consists of four different actuators; two servo-motors at the hubs and two piezoceramics bonded to the surfaces of the flexible links. Two sliding hyperplanes are designed for two servo-motors which have time varying parameters to maintain control performance in any configuration. The surface gradients of the hyperplanes are determined by pole assignment technique to guarantee the stability on the hyperplanes themselves. During the motion, undesirable oscillations caused by the torques based on the rigid link dynamics are actively suppressed by applying feedback control voltages to the piezoceramic actuators. Consequently, desired tip motion is achieved. In order to demonstrate the effectiveness of the proposed methodology, experiments are performed for the regulating and tracking control problems.

  • PDF