• Title/Summary/Keyword: Actuator Control

Search Result 2,159, Processing Time 0.029 seconds

Robust Adaptive Fuzzy Tracking Control Using a FBFN for a Mobile Robot with Actuator Dynamics (구동기 동역학을 가지는 이동 로봇에 대한 FBFN을 이용한 강인 적응 퍼지 추종 제어)

  • Shin, Jin-Ho;Kim, Won-Ho;Lee, Moon-Noh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.319-328
    • /
    • 2010
  • This paper proposes a robust adaptive fuzzy tracking control scheme for a nonholonomic mobile robot with external disturbances as well as parameter uncertainties in the robot kinematics, the robot dynamics, and the actuator dynamics. In modeling a mobile robot, the actuator dynamics is integrated with the robot kinematics and dynamics so that the actuator input voltages are the control inputs. The presented controller is designed based on a FBFN (Fuzzy Basis Function Network) to approximate an unknown nonlinear dynamic function with the uncertainties, and a robust adaptive input to overcome the uncertainties. When the controller is designed, the different parameters for two actuator models in the actuator dynamics are taken into account. The proposed control scheme does not require the kinematic and dynamic parameters of the robot and actuators accurately. It can also alleviate the input chattering and overcome the unknown friction force. The stability of the closed-loop control system including the kinematic control system is guaranteed by using the Lyapunov stability theory and the presented adaptive laws. The validity and robustness of the proposed control scheme are shown through a computer simulation.

Vibration Control of Beam using Distributed PVDF Sensor and PZT Actuator (분포형 압전필름 감지기와 압전세라믹 작동기를 이용한 보의 진동 제어)

  • 유정규;박근영;김승조
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.967-974
    • /
    • 1997
  • Distributed piezoeletric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF have been used in this study, the former as an actuator and the latter as a sensor for the integrated structure. We have optimized the position and the size of the PZT actuator and the electrode shape of the PVDF sensor. Finite element method is used to model the structure and the optimized actuators, we have designed the active electrode width of the PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Model control forces for the residual (uncontrolled) modes have been minimized during the sensor design to minimize the observation spill-over. Genetic algorithm and sequential quadratic programming technique have been utilized as an optimization scheme. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF

Actuator Failure Diagnosis and Accommodation Using Sliding Mode Control for Submersible Vehicle (슬라이딩 모드 제어기를 이용한 수중운동체 엑추에이터 고장진단 및 대처)

  • Yang, In-Seok;Kim, Young-Jin;Lee, Dong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.661-667
    • /
    • 2010
  • This paper presents a failure diagnosis and accommodation strategy which is capable of tolerating faulty actuators of a submersible vehicle. The proposed method is mainly based on a sliding mode control technique. The primary ideas include a performance index to describe the effectiveness of actuators, and a controller reconfiguration strategy using the actuator effectiveness index. The actuator effectiveness proposed in this work is defined as the relationship between the sliding surface and the controlled system behavior. The resulting actuator effectiveness is then used in reconfiguring the controller in order to counteract for the deteriorated control performance in the presence of a faulty actuator. The effectiveness of the proposed method is demonstrated by means of numerical simulations with a submersible vehicle.

Effects of photostrictive actuator and active control of flexible membrane structure

  • Gajbhiye, S.C.;Upadhyay, S.H.;Harsha, S.P.
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.71-83
    • /
    • 2014
  • The purpose of this paper is to investigate the flexible structure of parabolic shell using photostrictive actuators. The analysis is made to know its dynamic behavior and light-induced control forces for coupled parabolic shell. The effects of an actuator location as well as membrane and bending components under the control action have been analyzed considering the approximate spherical model. The parabolic membrane shell accuracy is being mathematically approximated and validated comparing the light induced control forces using approximate equivalent spherical shell model. The parabolic shell with kapton smart material and photostrictive actuators has been used to formulate the governing equation in the transverse direction. The Kirchhoff-Love assumptions are used to obtain the governing equation of shell with actuator. The mechanical membrane forces and bending moments for parabolic thin shell with actuator is used to analyze the dynamic effect. The results show that membrane control action is much more significant than bending control action. Photostrictive actuators oriented along circumferential direction (actuator-2) can give better control effect than actuators placed along longitudinal direction (actuator-1). The slight difference is observed between spherical and parabolic shell for a surface with focal length to the diameter ratio of 1.00 or more than unity. Space applications often have the shape of parabolical shells or shell of revolution, due to their required focusing, aiming, or reflecting performance. The present approach is focused that photostrictive actuators can effectively control the vibration of parabolical membrane shell. Also, the actuator's location plays an important role in defining the control force.

Design of Reconfigurable Flight Controller using Sliding Mode Control - Actuator Fault

  • dong ho Shin;Kim, Youdan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.40.2-40
    • /
    • 2002
  • This paper presents the reconfigurable flight controller in the presence of jammed actuator fault using the adaptive sliding mode control scheme. It is developed under the assumption that the control surface fault cannot be detected and the positions of stuck control surfaces are unknown. It is well known that sliding mode controller shows good performance for the systems with various uncertainties. None-operating stuck actuator makes the system behave like bias which degrades the system performance and sometimes destabilizes the system. Therefore, the bias term generated by actuator faults has to be compensated by the control system. To the objective, we adopt the adaptive sliding mode cont...

  • PDF

A Study on the Hydraulic Cylinder with built-in Displacement and Thrust Control Function

  • Kitagawa, Ato;Wu, Chunnan;Park, Sung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1157-1161
    • /
    • 2003
  • A novel actuator with built-in the displacement and the thrust control function is presented in this paper. This actuator is a kind of compact hydraulic cylinder system which consists of a hydraulic cylinder, a spool, a sleeve, a mechanical feedback mechanism and a stepping motor. The displacement and thrust is in proportion to the rotational angle of stepping motor by the mechanical feedback. In order to investigate characteristics of this actuator, simulation study and preliminary experiments are conducted. Through the preliminary experiment this actuator is very effective in the control for displacement and thrust. Also, it became obvious that the stability of system can be adjusted by using the restrictor with the effect of velocity feedback. Furthermore, this paper explained that a flexible compliance control could be realized by adjusting the feedback weighting in the actuator.

  • PDF

Aircraft CAS Design with Input Saturation Using Dynamic Model Inversion

  • Sangsoo Lim;Kim, Byoung-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.315-320
    • /
    • 2003
  • This paper presents a control augmentation system (CAS) based on the dynamic model inversion (DMI) architecture for a highly maneuverable aircraft. In the application of DMI not treating actuator dynamics, significant instabilities arise due to limitations on the aircraft inputs, such as actuator time delay based on dynamics and actuator displacement limit. Actuator input saturation usually occurs during high angles of attack maneuvering in low dynamic pressure conditions. The pseudo-control hedging (PCH) algorithm is applied to prevent or delay the instability of the CAS due to a slow actuator or occurrence of actuator saturation. The performance of the proposed CAS with PCH architecture is demonstrated through a nonlinear flight simulation.

Investigation of Kinematic Relation Between Actuator and Control Surface Deflection Using Aileron Linkage Analysis (에일러론 링키지 해석을 통한 작동기 변위와 조종면 변위의 상관관계 규명)

  • Lee, Sugchon;Lee, Sang-Jong
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.3
    • /
    • pp.24-28
    • /
    • 2012
  • An actuator should be added to a existing control linkage to make manned aircraft to unmanned. But it is quiet difficult to synchronize actuator with control surface because non-linear error necessarily occurs when four-bar linkage acts in three dimensional motion. In addition, in point of controller design view, while a real-time model needs the control surface deflection as its input, controller needs the actuator command as its output. Hence, the relation between both should be investigated. In this paper, the mathematical relation between actuator and control surface deflection investigated by kinematic analysis of a plant aircraft. The performance margin of the selected actuator also was verified.

Vibration Control System Design of Composite Shell by Profile Optimization of PVDF film (PVDF 필름 형상최적화에 의한 복합재료 쉘의 진동제어 시스템 설계)

  • 황준석;목지원;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.228-231
    • /
    • 2000
  • The active vibration control of laminated composite shell has been performed with the optimized sensor/actuator system. PVDF film is used fur the material of sensor/actuator. Finite element method is utilized to model the whole structure including the piezoelectric sensor/actuator system, The distributed selective modal sensor/actuator system is established to prevent the adverse effect of spillover. In the finite element discretization process, the nine-node shell element with five nodal degrees of freedoms is used. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator profiles are optimized for the first and the second modes suppression of singly curved cantilevered composite shell structure. Discrete LQG method is used as a control law. The real time vibration control with profile optimized sensor/actuator system has been performed. Experimental result shows successful performance of the integrated structure for the active vibration control.

  • PDF

Design of a Gyro Actuator for the Attitude Control of an Unstructured Object (공중 물체의 자세 제어를 위한 자이로 엑츄에이터 설계)

  • Chung, Young-Gu;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.490-492
    • /
    • 1998
  • An intention of this paper is design of a gyro actuator for the attitude control of an unstructured object. It is well known that the attitude control of an object hanging with wire is not easy using usual actuators. Even though an actuator such as a pan can be used for control of the object, it is difficult to meet a desired control objectives. We, for this reason, propose a gyro actuator for the attitude control of an unstructured object. The proposed gyro actuator consists of two motors. The first motor is responsible to spin the wheel and the second motor is used to turn the outer gimbal. Appling the torque to the second motor, which results in the turn of the outer gimbal, torque about the vertical axis will be obtained while a wheel of the gyro is spinning constantly. This torque is used to control the attitude of the object attached. The aim of this paper is of deriving the transfer function of the actuator and presenting the guideline of the design parameters such as the weight and the dimension of the wheel, motors, and the load capacity. Simulations to the mathematical model which has a state feedback control are conducted to show the validity of the proposed gyro actuator.

  • PDF