DOI QR코드

DOI QR Code

Effects of photostrictive actuator and active control of flexible membrane structure

  • Gajbhiye, S.C. (Vishwavidyalaya Engineering College, Saguja Univeristy) ;
  • Upadhyay, S.H. (Indian Institute of Technology Roorkee) ;
  • Harsha, S.P. (Indian Institute of Technology Roorkee)
  • Received : 2012.10.19
  • Accepted : 2013.06.23
  • Published : 2014.08.25

Abstract

The purpose of this paper is to investigate the flexible structure of parabolic shell using photostrictive actuators. The analysis is made to know its dynamic behavior and light-induced control forces for coupled parabolic shell. The effects of an actuator location as well as membrane and bending components under the control action have been analyzed considering the approximate spherical model. The parabolic membrane shell accuracy is being mathematically approximated and validated comparing the light induced control forces using approximate equivalent spherical shell model. The parabolic shell with kapton smart material and photostrictive actuators has been used to formulate the governing equation in the transverse direction. The Kirchhoff-Love assumptions are used to obtain the governing equation of shell with actuator. The mechanical membrane forces and bending moments for parabolic thin shell with actuator is used to analyze the dynamic effect. The results show that membrane control action is much more significant than bending control action. Photostrictive actuators oriented along circumferential direction (actuator-2) can give better control effect than actuators placed along longitudinal direction (actuator-1). The slight difference is observed between spherical and parabolic shell for a surface with focal length to the diameter ratio of 1.00 or more than unity. Space applications often have the shape of parabolical shells or shell of revolution, due to their required focusing, aiming, or reflecting performance. The present approach is focused that photostrictive actuators can effectively control the vibration of parabolical membrane shell. Also, the actuator's location plays an important role in defining the control force.

Keywords

References

  1. Crawley, E.F. (1994), "Intelligent structures for aerospace - A technology overview and assessment", AIAA J., 32(8), 1689-1699. https://doi.org/10.2514/3.12161
  2. Fukuda, T., Hattori, S., Arai, F., Matsuura, H., Hiramatsu, T., Ikeda, Y. and Maekawa, A. (1993), "Characteristics of optical actuator - servo-mechanisms using bimorph optical piezoelectric actuator", Proceedings of the Conf. on 1993 IEEE Robotics and Automation.
  3. Gajbhiye, S.C., Upadhyay, S.H. and Harsha, S.P. (2012), "Free vibration analysis of flat thin membrane", J. Eng. Sci. Tech., 4(8), 3942-3948.
  4. Glaese, R.M., Regelbrugge, M.E., Lore, K.F., Smith, S.W. and Flint, E.M. (2003), "Modeling the dynamics of large diameter doubly curved shells made from thin-films", Proceedings of the 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, AIAA-2003.
  5. Guo, Y.L., Zhou, J., Huang, Y. and Bao, M.H. (2007), "Modeling of photo induced deformation in silicon micro cantilever", J. Sensors, 7, 1713-1719. https://doi.org/10.3390/s7091713
  6. Jenkins, C.H. (1996), "Non-linear dynamic response of membranes: state of the art-update", J. Appl. Mech. Rev., 49(10), 41-48. https://doi.org/10.1115/1.3101975
  7. Jenkins, C.H. and Korde, U.A. (2006), "Membrane vibration experiments: An historical review and recent results", J. Sound Vib., 295(3-5), 602-613. https://doi.org/10.1016/j.jsv.2006.01.036
  8. Jha, A.K., Inman, D.J. and Plaut, R.H. (2002), "Free vibration analysis of an inflated toroidal shell", J. Vib. Acoust., 124(3), 387-396. https://doi.org/10.1115/1.1467650
  9. Leyland, Y.G., Ramanathan, S., Jiazhu Hu, and Pai, P.F. (2005), "Numerical and experimental dynamic characteristics of thin-film membranes", Int. J. Solids Struct., 42, 3001-3025. https://doi.org/10.1016/j.ijsolstr.2004.09.031
  10. Liang, L. Wang, S. and Cao, F. (2006), "Research on dynamic characteristic of optical drive servo system with PLZT", Proceedings of the 6th International Symposium on Instrumentation and Control Technology. Beijing, China.
  11. Lim, Y.H, Gopinathan, S.V., Varadan, V.V. and Varadan, V.K. (1999), "Finite element simulation of smart structures using an optimal output feedback controller for vibration and noise control", Smart Mater. Struct., 8(3), 324-337. https://doi.org/10.1088/0964-1726/8/3/305
  12. Liu, B. and Tzou, H.S. (1998), "Distributed photostrictive actuation and opto-piezo thermoelasticity applied to vibration control of plates", J. Vib. Acoust., 120(4), 937-943. https://doi.org/10.1115/1.2893923
  13. Ma, N., Song, G. and Lee, H.J. (2004), "Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks", Smart Mater. Struct., 13(4), 777-783. https://doi.org/10.1088/0964-1726/13/4/015
  14. Mirzaee, E., Eghtesad, M. and Fazelzadeh, S.A. (2010), "Maneuver control and active vibration suppression of a two-link flexible arm using a hybrid variable structure/lyapunov control design", Acta Astronautica, 67(9-10), 1218-1232. https://doi.org/10.1016/j.actaastro.2010.06.054
  15. Mirzaee, E., Eghtesad, M. and Fazelzadeh, S.A. (2011), "Trajectory tracking and active vibration suppression of a smart Single-Link flexible arm using a composite control design", Smart Struct. Syst., 7(2), 103-116. https://doi.org/10.12989/sss.2011.7.2.103
  16. Saigal, S., Yang, T.Y., Kim, H.W. and Soedel, W. (1986), "Free vibration of a tire as a toroidal membrane", J. Sound Vib., 107(1), 71-82. https://doi.org/10.1016/0022-460X(86)90283-X
  17. Shih, H.R. (2000), "Distributed vibration sensing and control of a piezoelectric laminated curved beam", Smart Mater. Struct., 9(6), 761-766. https://doi.org/10.1088/0964-1726/9/6/304
  18. Shih, H.R. and Tzou, H.S. (2006), "Wireless control of parabolic shells using photostrictive actuators", Proceedings of the IMECE'2006. Chicago, USA.
  19. Shih, H.R. and Tzou, H.S. (2007), "Photostrictive actuators for photonic control of shallow spherical shells", Smart Mater. Struct., 16(5), 1712-1717. https://doi.org/10.1088/0964-1726/16/5/025
  20. Shih, H.R., Watkins, J. and Tzou, H.S. (2005a), "Displacement control of a beam using photostrictive optical actuators", J. Intell. Mat. Syst. Str., 16(4), 355-363. https://doi.org/10.1177/1045389X05050101
  21. Shih, H.R., Tzou, H.S. and Saypuri, M. (2005b), "Structural vibration control using spatially configured opto-electromechanical actuators", J. Sound Vib., 284(1-2), 361-378. https://doi.org/10.1016/j.jsv.2004.06.013
  22. Soedel, W. (1981), Vibrations of shell and plates, Material Dekker Inc., New York.
  23. Sun, D. and Tong, L. (2007), "Modeling of wireless remote shape control for beams using nonlinear photostrictive actuators", Int. J. Solids Struct., 44, 672-684. https://doi.org/10.1016/j.ijsolstr.2006.05.013
  24. Sun, D. and Tong, L. (2008), "Theoretical investigation on wireless vibration control of thin beams using photostrictive actuators", J. Sound Vib., 312(1-2), 182-194. https://doi.org/10.1016/j.jsv.2007.10.049
  25. Tan, L.T. and Pellegrino, S. (2004), Ultra thin deployable reflector antennas, AIAA, Paper 2004, 1730.
  26. Tzou, H.S. (1993), Piezoelectric shells (distributed sensing and control of continua), Kluwer Academic Publishers, Boston, Dordrecht.
  27. Tzou, H.S. (1998), "Multifield transducers,devices, mechatronic systems, and structronic systems with smart materials", Shock Vib. Dig., 30(4), 282-294. https://doi.org/10.1177/058310249803000402
  28. Tzou, H.S. and Chou, C.S. (1996), "Non-linear opto-electro mechanics and photo deformation of optical actuators", Smart Mater. Struct., 5(2), 230-235. https://doi.org/10.1088/0964-1726/5/2/012
  29. Uchino, K. (1990), "Photostrictive actuators", Proceedings of the IEEE 1990 Ultrasonic's Symp.
  30. Uchino, K. (1996), "New Applications of Photostriction", Innovations Mater. Res., 1(1), 11-22.
  31. Uchino, K., Poosanaas, P. and Tonooka, K. (2001), "Photostrictive actuators - new perspective", Ferroelectrics, 264, 303-308.
  32. Wang X., Yue H., Deng Z. (2011), "Active control of free paraboloidal membrane shells using photostrictive actuators", Trans. Tianjin Univ., 17, 6-12. https://doi.org/10.1007/s12209-011-1469-8
  33. Wang, X., Yue, H., Tzou, H.S. and Zonguan, D. (2009), "Actuation characteristics and control of thin cylindrical shells laminated with photostrictive actuators", J. Vib. Shock, 28(9), 9-14.
  34. Yue, H.H., Deng, Z.Q. and Tzou, H.S. (2007), "Distributed signal analysis of free-floating paraboloidal membrane shells", J. Sound Vib., 304(3-5), 625-639. https://doi.org/10.1016/j.jsv.2007.03.018