• Title/Summary/Keyword: Actuation

Search Result 759, Processing Time 0.023 seconds

Nonlinear analysis of a pneumatic actuation system by digital simulation (전산모사에 의한 공압구동장치의 비선형 해석)

  • 조택동;신효필;문의준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1104-1109
    • /
    • 1991
  • Recently, Pneumatic Actuation System (PAS) has been used increasingly as a high performance fin-control servo actuation systems because of the special advantages of pneumatic units: primarily their low cost, small size, light weight, and tolerance to broad temperature extremes. In this study, a nonlinear model of PAS is derived through the detailed analysis of the major components in the typical system. The model includes nonlinear flow-pressure relationships of the flow through the solenoid valve openings and orifices, PWM algorithm for driving two solenoid valves as a closed-center 3-way valve for minimum gas consumption, solenoid valve dynamics, saturation, and friction. Simulation results are compared with the experimental ones for square and sinusoidal inputs to see the validity of the model. Independent of the shape and magnitude of the input signals, both results are in good agreements with minor difference.

  • PDF

Analysis on Actuation Mechanism of Micro Actuator by Bubble Formation (기포형성에 의한 마이크로 액추에이터의 구동기구 해석)

  • 오시덕;승삼선;곽호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.418-426
    • /
    • 1995
  • A bubble-powered microactuator is designed conceptually. And the actuation mechanism due to bubble growth and collapse is studied numerically and analytically. In this analysis, it is estimated that the time lag for bubble formation on micro line heater, the duration of the bubble growth and collapse and the pressure change in actuator due to the bubble evolution. Based on these calculations, the actuator control scheme is visualized. This actuator may be applicable to the system which needs to pump liquid correctly and regularly.

Micro robot using actuators based on dielectric elastomer (고분자 구동기를 이용한 마이크로 로봇)

  • 최혁렬;정광목;남재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.334-337
    • /
    • 2003
  • In this paper. we introduce a novel actuation method based on dielectric elastomer. Along with basic principles of actuation using dielectric elastomer a new design of actuator is discussed. The proposed design has advantageous features in reduction in size, speed of response, ease and ruggedness of operation. Using the actuator. a three-degree-of-freedom actuator module is developed, which can provide up-down. and two rotational degree-of-freedom motion. In the application of the proposed actuation method, a micro-robot mimicking the motion of an inchworm is developed.

  • PDF

Stiffness Analysis in a Redundantly Actuated Four-Bar Mechanism (잉여구동을 지닌 4절 기구에서의 강성효과에 대한 해석)

  • 이병주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.846-855
    • /
    • 1994
  • An effective stiffness, analogous to that of a wound spring, can be created by antagonistic redundant actuation of general closed-chain mechanisms. The qualitative and quantitative characteristics of the effective stiffness are investigated through a Four-bar mechanism, and a load distribution method is introduced which simultaneously guarantees the required system motion and the effective stiffness of the Four-bar mechanism. Furthermore, a simulation is performed to understand the inter-relationship among the effective stiffness, the Four-bar geometry, and the actuation effort. Based on this analysis, the Four-bar synthesis problem for effective stiffness generation is discussed.

Electromechanical Simulation of Cellulose Based Biomimetic Electro-Active Paper (생체모방 종이작동기(electro-active paper)의 전기기계적인 구동 시뮬레이션)

  • Jang, Sang-Dong;Kim, Jae-Hwan;Kim, Heung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1179-1183
    • /
    • 2007
  • Electro-Active paper(EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. It is made by cellulose that is abundant material in nature. EAPap is fascinating with its biodegradability, lightweight, large displacement, high mechanical strength and low actuation voltage. Actuating mechanism of EAPap is known to be the combined effects of ion migration and piezoelectricity. However, the electromechanical actuation mechanisms are not yet to be established. This paper presents the modeling of the actuation behavior of water infused cellulose samples and their composite dielectric constants calculated by Maxwell-Wagner theory. Electro-mechanical forces were calculated using Maxwell stress tensor method. Bending deflection was evaluated from simple beam model and compared with experimental observation, and which result in good correlation with each other.

Frequency Response Compensation Technique for Capacitive Microresonator (용량형 마이크로 공진기의 주파수 응답 보상 기법)

  • Seo, Jin-Deok;Lim, Kyo-Muk;Ko, Hyoung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.235-239
    • /
    • 2012
  • This paper presents frequency response compensation technique, and a self-oscillation circuit for capacitive microresonator with the compensation technique using programmable capacitor array, to compensate for the frequency response distorted by parasitic capacitances, and to obtain stable oscillation condition. The parasitic capacitances between the actuation input port and capacitive output port distort the frequency response of the microresonator. The distorted non-ideal frequency response can be compensated using two programmable capacitor arrays, which are connected between anti-phased actuation input port and capacitive output port. The simulation model includes the whole microresonator system, which consists of mechanical structure, transimpedance amplifier with automatic gain control, actuation driver and compensation circuit. The compensation operation and oscillation output of the system is verified with the simulation results.

Estimation of the Frictional Coefficient of Contact Point between the Terrain and the Wheel-Legged Robot with Hip Joint Actuation (고관절 구동 방식을 갖는 바퀴-다리형 로봇과 지면 간 접촉점에서의 마찰계수 추정)

  • Shin, Dong-Hwan;An, Jin-Ung;Moon, Jeon-Il
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.284-291
    • /
    • 2011
  • This paper presents the estimation of the frictional coefficient of the wheel-legged robot with hip joint actuation producing maximum tractive force. Slip behavior for wheel-legged robot is analytically explored and physically understood by identification of the non-slip condition and derivation of the torque limits satisfying it. Utilizing results of the analysis of slip behavior, the frictional coefficients of the wheel-legged robot during stance phase are numerically estimated and finally this paper suggests the pseudo-algorithm which can not only estimate the frictional coefficients of the wheel-legged robot, but also produce the candidate of the touch down angle for the next stance.

Twisted String-based Upper Limb Exoskeleton (줄꼬임에 기반한 상지 외골격 로봇)

  • Lee, Seung-Jun;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.960-966
    • /
    • 2016
  • This paper proposes a new concept of a soft and wearable upper-limb exoskeleton. A novel actuation principle, called the twisted string actuation principle, is implemented to make it lightweight, soft, and therefore easily wearable. Its power transmission mechanism and harness are designed to be soft and wearable, yet have enough control accuracy for rehabilitation. In addition to force transmission optimization, a speed enlargement mechanism is newly introduced in order to increase the contraction speed of the twisted string actuation mechanism by sacrificing the unnecessarily large gear reduction ratio of the twisted string mechanism. A prototype has been tested for mirroring therapy, and the feasibility of the proposed mechanism has been shown through a sufficiently accurate tracking performance.

A Novel Nonmechanical Finger Rehabilitation System Based on Magnetic Force Control

  • Baek, In-Chul;Kim, Min Su;Kim, Sung Hoon
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.155-161
    • /
    • 2017
  • This paper presents a new nonmechanical rehabilitation system driven by magnetic force. Typically, finger rehabilitation mechanisms are complex mechanical systems. The proposed method allows wireless operation, a simple configuration, and easy installation on the hand for active actuation by magnetic force. The system consists of a driving coil, driving magnets (M1), and auxiliary magnets (M2 and M3), respectively, at the finger, palm, and the center of coil. The magnets and the driving coil produce three magnetic forces for an active motions of the finger. During active actuations, magnetic attractive forces between M1 and M2 or between M1 and M3 enhance the flexion/extension motions. The proposed system simply improves the extension motion of the finger using a magnetic system. In this system, the maximum force and angular variation of the extension motion were 0.438 N and $49^{\circ}$, respectively. We analyzed the magnetic interaction in the system and verified finger's active actuation.

Static Structural Analysis of 75 tonf-class Engine with TVC actuation force (TVC 구동력을 고려한 75톤급 엔진 정적 구조 해석)

  • Yoo, Jaehan;Gwak, Junyoung;Kim, Okgu;Jeon, Seongmin;Jeong, Eunhwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.913-914
    • /
    • 2017
  • Structural analyses of a engine system is required in development stage for increasing structural reliability and reducing weight. Attitude of a launch vehicle during flight is controlled by combustion chamber rotation varying with TVC (thrust vector control) actuator displacements. In this study nonlinear static analysis is performed for a 75 tonf-class liquid rocket engine using before and after the TVC actuation.

  • PDF