• Title/Summary/Keyword: Actuated Control

Search Result 227, Processing Time 0.029 seconds

Development of a Biped Walking Robot Actuated by a Closed-Chain Mechanism

  • Choi, Hyeung-Sik;Oh, Jung-Min;Baek, Chang-Yul;Chung, Kyung-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.209-214
    • /
    • 2003
  • We developed a new type of human-sized BWR (biped walking robot), named KUBIR1 which is driven by the closed-chain type of actuator. A new type of the closed-chain actuator for the robot is developed, which is composed of the four-bar-link mechanism driven by the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of 6 D.O.F joints. For front walking, three pitch joints and one roll joint at the ankle. In addition to this, one yaw joint for direction change, and another roll joint for balancing the body are attached. Also, the robot has two D.O.F joints of each hand and three D.O.F. for eye motion. There are three actuating motors for stereo cameras for eyes. In all, a 18 degree-of-freedom robot was developed. KUBIR1 was designed to walk autonomously by adapting small 90W DC motors as the robot actuators and batteries and controllers are on-boarded. The whole weight for Kubir1 is over 90Kg, and height is 167Cm. In the paper, the performance test of KUBIR1 will be shown.

  • PDF

Inverse Kinematic Analysis of a Binary Robot Manipulator using Neural Network (인공신경망을 이용한 2진 로봇 매니퓰레이터의 역기구학적 해석)

  • Ryu, Gil-Ha;Jung, Jong-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.211-218
    • /
    • 1999
  • The traditional robot manipulators are actuated by continuous range of motion actuators such as motors or hydraulic cylinders. However, there are many applications of mechanisms and robotic manipulators where only a finite number of locations need to be reached, and the robot’s trajectory is not important as long as it is bounded. Binary manipulator uses actuators which have only two stable states. As a result, binary manipulators have a finite number of states. The number of states of a binary manipulator grows exponentially with the number of actuators. This kind of robot manipulator has some advantage compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. And this kind of robot manipulator has a fault tolerant mechanism because of kinematic redundancy. In this paper, we solve the inverse kinematic problem of a binary parallel robot manipulator using neural network and test the validity of this structure using some arbitrary points m the workspace of the robot manipulator. As a result, we can show that the neural network can find the nearest feasible points and corresponding binary states of the joints of the robot manipulator

  • PDF

Precision Position Controller Design for a 6-DOF Stage with Piezoelectric Actuators and Lever Linkages Based on Nonlinearity Estimation (압전 구동기와 레버 링키지를 이용한 6 자유도 스테이지의 비선형성 평가에 기초한 정밀 위치 제어기의 설계)

  • Moon, Jun-Hee;Lee, Bong-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1045-1053
    • /
    • 2009
  • Precision stages for 6-DOF positioning, actuated by PZT stacks, which are fed back by gap sensors and guided by flexure hinges, have enlarged their application territory in micro/nano manufacturing and measurement area. The precision stages inherently have such limitations as the nonlinearity between input and output in piezoelectric stacks, feedback signal noise in precision capacitive gap sensors and low material damping in precision kinematic linkages of mechanical flexures. To surmount these limitations, the precision stage is modeled with physics-based variables, which are identified by transient response correspondence, and a gain margin calculation algorithm using the Prandtl-Ishlinskii model and describing function is newly developed to assess system performance more precisely than linear controller design schemes. Based on such analyses, a precision positioning controller is designed. Excellent positioning accuracy with rapid settlement accomplished by the controller is shown in step responses of the closed-loop system.

Fabrication of a Magnetostrictive Transpositioner using Thin Film Deposition and MEMS Techniques (박막성형 기술 및 MEMS 공정을 이용한 자기변형 위치변환기)

  • Lee, Heung-Shik;Cho, Chong-Du;Lee, Sang-Kyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1617-1620
    • /
    • 2007
  • This paper presents a magnetostrictive transpositioner and its fabrication process. To get a transposition movement without shifting or twisting, it is designed as an array type. To fabricate the suggested design, micromachining and selective DC magnetron sputtering processes are combined. TbDyFe film is sputter-deposited on the back side of the bulk micromachined transpositioner, with the condition as: Ar gas pressure below $1.2{\times}10^{-9}$ torr, DC input power of 180W and heating temperature of up to $250^{\circ}C$ for the wireless control of each array component. After the sputter process, magnetization and magnetostriction of each sample are measured. X-ray diffraction studies are also carried out to determine the film structure and thickness of the sputtered film. For the operation, each component of the actuator has same length and out-of-plane motion. Each component is actuated by externally applied magnetic fields up to 0.5T and motion of the device made upward movement. As a result, deflections of the device due to the movement for the external magnetic fields are observed.

  • PDF

Active shape change of an SMA hybrid composite plate

  • Daghia, Federica;Inman, Daniel J.;Ubertini, Francesco;Viola, Erasmo
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.91-100
    • /
    • 2010
  • An experimental study was carried out to investigate the shape control of plates via embedded shape memory alloy (SMA) wires. An extensive body of literature proposes the use of SMA wires to actively modify the shape or stiffness of a structure; in most cases, however, the study focuses on modeling and little experimental data is available. In this work, a simple proof of concept specimen was built by attaching four prestrained SMA wires to one side of a carbon fiber laminate plate strip. The specimen was clamped at one end and tested in an environmental chamber, measuring the tip displacement and the SMA temperature. At heating, actuation of the SMA wires bends the plate; at cooling deformation is partially recovered. The specimen was actuated a few times between two fixed temperatures $T_c$ and $T_h$, whereas in the last actuation a temperature $T_f$ > $T_h$ was reached. Contrary to most model predictions, in the first actuation the transformation temperatures are significantly higher than in the following cycles, which are stable. Moreover, if the temperature $T_h$ is exceeded, two separate actuations occur during heating: the first follows the path of the stable cycles; the second, starting at $T_h$, is similar to the first cycle. An interpretation of the phenomenon is given using some differential scanning calorimeter (DSC) measurements. The observed behavior emphasizes the need to build a more comprehensive constitutive model able to include these effects.

Design of a New Haptic Device using a Parallel Mechanism with a Gimbal Mechanism

  • Lee, Sung-Uk;Shin, Ho-Chul;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2331-2336
    • /
    • 2005
  • This paper proposes a new haptic device using a parallel mechanism with gimbal type actuators. This device has three legs actuated by 2-DOF gimbal mechanisms, which make the device simple and light by fixing all the actuators to the base. Three extra sensors are placed at passive joints to obtain a unique solution of the forward kinematics problem. The proposed haptic device is developed for an operator to use it on a desktop in due consideration of the size of an average Korean. The proposed haptic device has a small workspace for on operator to use it on a desktop and more sensitivity than a serial type haptic device. Therefore, the motors of the proposed haptic device are fixed at the base plate so that the proposed haptic device has a better dynamic bandwidth due to a low moving inertia. With this conceptual design, optimization of the design parameters is carried out. The objective function is defined by the fuzzy minimum of the global design indices, global force/moment isotropy index, global force/moment payload index, and workspace. Each global index is calculated by a SVD (singular value decomposition) of the force and moment parts of the jacobian matrix. Division of the jacobian matrix assures a consistency of the units in the matrix. Due to the nonlinearity of this objective function, Genetic algorithms are adopted for a global optimization.

  • PDF

A Study on Development of High Pressure Hydrogen Injection Valve (직접분사식 고압 수소분사밸브의 개발에 관한 연구)

  • Kim, Yun-Young;Ahn, Jong-Yun;Lee, Jong-Tai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.3
    • /
    • pp.107-117
    • /
    • 2000
  • Ball poppet valve type high pressure hydrogen injection valve actuated by solenoid has been developed for the feasibility of practical use of hydrogen fueled engine with direct injection and the precise control of fuel injection ratio in hydrogen fueled engine with dual injection. The gas-tightness of ball poppet injection valve is improved by the introduction of ball-shaped valve face, valve end typed spherical pair, and valve stem with rotating blade. Ball poppet valve is mainly closed by differential pressure due to the area difference between valve fillet and pressure piston. So, it can be operated by solenoid actuator with small driving force. From the evaluation of ball poppet injection valve, it was found that the gastightness and controlment of this injection valve are better than those of injection valve had been developed before.

  • PDF

Swimming Microrobot Actuated by External Magnetic Field (전자기 구동 유영 마이크로로봇)

  • Byun, Dong-Hak;Kim, Jun-Young;Baek, Seung-Man;Choi, Hyun-Chul;Park, Jong-Oh;Park, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1300-1305
    • /
    • 2009
  • The various electromagnetic based actuation(EMA) methods have been proposed for actuating microrobot. The advantage of EMA is that it can provide wireless driving to microrobot. In this reason a lot of researchers have been focusing on the EMA driven microrobot. This paper proposed a swimming microrobot driven by external alternating magnet field which is generated by two pairs of Helmholtz coils. The microrobot has a fish-like shape and consists of a buoyant robot body, a permanent magnet, and a fin. The fin is directly linked to the permanent magnet and the magnet is swung by the alternating magnet field, which makes the propulsion and steering power of the robot. In this paper, firstly, we designed the locomotive mechanism of the microrobot boy EMA. Secondly, we set up the control system. Finally, we demonstrated the swimming robot and evaluated the performance of the microrobot by the experiments.

Design and Demonstration of Morphing Wing Sections Using Lightweight Piezoceramic Composite Actuator (LIPCA) (압전 작동기 LIPCA를 이용한 형상가변익 설계 및 작동구현)

  • Im,Sang-Min;Lee,Sang-Gi;Park,Hun-Cheol;Yun,Gwang-Jun;Gu,Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.34-39
    • /
    • 2003
  • Morphing wing sections actuated by piezoceramic actuator LIPCA have been designed and their actuation displacements estimated by using the therml analogy and MSC/NASTRAN based on the linear elasticity. The wing sections are fabricated as the design and tested for evaluation. Measured actuation displacements were larger than the estimated values mainly due to the material non-linearity of the PIT wafer. The morphing wing sections can be used for control surfaces of small scale UAVs or MAVs.

A Micro-positioning Parallel Mechanism Platform with 100-degree Tilting Capability (높은 회전성능($100^{\circ}$)을 가지는 초정밀 위치결정용 마이크로 병렬기구 플랫폼의 개발)

  • Yoon Yong-Ha;Kang Deuk-Soo;Seo Tae-Won;Kim Hong-Seok;Sung Tai-Jong;Kim Jong-Won
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.131-132
    • /
    • 2006
  • This paper presents a micro-positioning platform based on the unique parallel mechanism recently developed by the authors. The platform has a meso-scale rectangular shape whose size is $20{\times}23m$. The stroke is 5 mm for both the x- and y-axis and 100 degrees for the ${\alpha}$-axis(the rotational axis along the x-axis). The platform is actuated by the three sets of two-stage linear actuators: a linear motor for rough positioning and a piezo actuator for fine positioning. The platform is already assembled. Experimental results of the positioning measurements and control performance are presented.

  • PDF