• Title/Summary/Keyword: Actual vessel.

Search Result 213, Processing Time 0.018 seconds

Overall studies on the IMO manoeuvrability standard and problems arising in application of the criteria of it to various kinds of vessels

  • Lee Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.595-601
    • /
    • 2005
  • The IMO manoeuvrability standard was established for preventing sea accidents such as collisions and strandings due to the lack of manoeuvrability. The standard of ship manoeuvrability enforced by resolution MSC.l37(76) has been applied to vessels of 100m or more in length and all chemical tankers and gas carriers regardless of the length, which were constructed on or after 1 July 1994. The IMO manoeuvrability standard is able to be divided into three kinds as followings; (1) Turning capability standard: Estimated values in design stage are to be certified by turning circle test of the actual vessel. (2) Course keeping quality standard : Estimated values in design stage are to be certified by 10 deg. and 20 deg. zig-zag tests of the actual vessel. (3) Shortest stopping distance standard : Estimated value in design stage is to be certified by the shortest stopping distance tested by the actual vessel. In this paper, the authors verified the criteria of IMO manoeuvrability standard comparing them with the values resulted from sea trial tests of various kinds of actual vessels and examined separately the validity of all criteria of the standard.

Overall studies on the IMO manoeuvrability standard and problems arising in application of the criteria of it to various kinds of vessels

  • Lee Chun-Ki;Yoon Jeom-Dong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.27-33
    • /
    • 2005
  • The IMO manoeuvrability standard was established for preventing sea accidents such as collisions and strandings due to the lack of manoeuvrability. The standard of ship manoeuvrability enforced by resolution MSC.137(76) has been applied to vessels of 100m or more in length and all chemical tankers and gas carriers regardless of the length, which were constructed on or after 1 July 1994. The IMO manoeuvrability standard is able to be divided into three kinds as followings; (1) Turning capability standard: Estimated values in design stage are to be certified by turning cir치e test q the actual vessel (2) Course keeping quality standard: Estimated values in design stage are to be certified by 10 deg. and 20 deg. zig-zag tests of the actual vessel. (3) Shortest stopping distance standard: Estimated value in design stage is to be certified by the shortest stopping distance tested by the actual vessel. In this paper, the authors verified the criteria of IMO manoeuvrability standard comparing them with the values resulted from sea trial tests of various kinds q actual vessels and examined separately the validity of all criteria of the standard.

  • PDF

Analysis on Actual Condition of Usage and Safety Management for CNG Pressure Vessel in Bus (CNG버스 내압용기 사용 및 안전관리 실태 분석)

  • Kim, Eui Soo
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.6-14
    • /
    • 2019
  • There are about 38,977 CNG cars and 247 natural gas vehicle charging stations in operation in order to improve the urban air environment. With the introduction of natural gas vehicles, the atmospheric environment, which was the main cause of air pollution in the metropolitan area, was remarkably improved. However, unlike these positive effects, CNG bus accidents, which occurred more than 10 times since 2005, have caused concern among the majority of citizens using public transportation. It is necessary to make a judgment on the feasibility and future direction of CNG pressure vessel safety management that can safeguard the safety of CNG pressure vessel at the time of starting. In this study, we investigates production and use of CNG vessel, the current status of safety management of CNG bus transportation companies & charging stations and then proposes measures to prevent accident recurrence and safety management based on the actual situation investigation and analysis.

Vessel traffic geometric probability approaches with AIS data in active shipping lane for subsea pipeline quantitative risk assessment against third-party impact

  • Tanujaya, Vincent Alvin;Tawekal, Ricky Lukman;Ilman, Eko Charnius
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.267-284
    • /
    • 2022
  • A subsea pipeline designed across active shipping lane prones to failure against external interferences such as anchorage activities, hence risk assessment is essential. It requires quantifying the geometric probability derived from ship traffic distribution based on Automatic Identification System (AIS) data. The actual probability density function from historical vessel traffic data is ideal, as for rapid assessment, conceptual study, when the AIS data is scarce or when the local vessels traffic are not utilised with AIS. Recommended practices suggest the probability distribution is assumed as a single peak Gaussian. This study compares several fitted Gaussian distributions and Monte Carlo simulation based on actual ship traffic data in main ship direction in an active shipping lane across a subsea pipeline. The results shows that a Gaussian distribution with five peaks is required to represent the ship traffic data, providing an error of 0.23%, while a single peak Gaussian distribution and the Monte Carlo simulation with one hundred million realisation provide an error of 1.32% and 0.79% respectively. Thus, it can be concluded that the multi-peak Gaussian distribution can represent the actual ship traffic distribution in the main direction, but it is less representative for ship traffic distribution in other direction. The geometric probability is utilised in a quantitative risk assessment (QRA) for subsea pipeline against vessel anchor dropping and dragging and vessel sinking.

The disposal process for scrapped FRP fishing vessels (감척으로 인한 FRP 어선의 처리방안)

  • Song, Jung-Hun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.75-80
    • /
    • 2008
  • A scrapped fiber-reinforced plastic(FRP) fishing vessel causes many environmental problems, because technology development for recycling FRP vessel has not been adequately addressed. FRP is a main material for constructing a small coastal fishing vessel that is an object of reduction policy. Therefore, the FRP wastes derived a scrapped fishing vessel are increasing. In this study, I investigated an effective disposal process for FRP through the analysis of the actual conditions of scrapped FRP fishing vessel. The treatment processes of scrapped FRP fishing vessel are carried out with oil-removing, dismantling, intermediated processing(crushing), and then reclaiming follows burning in the final processing in Korea. However, in Japan, several recycling methods have been developed, for example, the incineration including thermal recovery, the use of cement-reclamation, and the use of asphalt concrete aggregate, because the method of reclaiming after incinerating which is generally used in Korea produces a toxic by-product such as dioxin.

A survey of the actual operating status of coastal composite fishery (octopus pot) in the Jeonnam waters (전남지역 연안복합(문어단지) 어업의 조업실태 조사)

  • KOO, Myung-Sung;CHO, Sam-Kwang;BAE, Bong-Seong;CHA, Bong-Jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.4
    • /
    • pp.292-301
    • /
    • 2021
  • Interviews and boarding surveys were conducted in order to understand the actual usage of octopus pot in the coastal composite fishery in Jeollanam-do. According to the results of the interviews conduced by visiting the areas (Goheung, Yeosu and Wando), the number of octopus pots per nine-ton vessel were 30,000-80,000, and the number of daily usage pots were 7,000-10,000. The number of octopus pots per four-ton vessel was 40,000, and the number of daily usage pots were 4,000. As a result of the survey on two octopus pot fishing boats (9.77-ton and 4.99-ton) in Yeosu area, the daily catch weight of 9-ton class vessel was the minimum of 66.9 kg and the maximum of 159.6 kg. The daily catch weight of the four-ton class fishing vessel was from 31.3 kg to maximum 85.6 kg. The average number of octopus pot used per day in the nine-ton class vessel was 6,821 (the minimum of 6,031 and the maximum of 7,697) and 3,181 (the minimum of 2,282 and the maximum of 3,878) in the four-ton class vessel.

Sensitivity Studies on Thermal Margin of Reactor Vessel Lower Head During a Core Melt Accident

  • Kim, Chan-Soo;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.379-394
    • /
    • 2000
  • As an in-vessel retention (IVR) design concept in coping with a severe accident in the nuclear power plant during which time a considerable amount of core material may melt, external cooling of the reactor vessel has been suggested to protect the lower head from overheating due to relocated material from the core. The efficiency of the ex-vessel management may be estimated by the thermal margin defined as the ratio of the critical heat flux (CHF)to the actual heat flux from the reactor vessel. Principal factors affecting the thermal margin calculation are the amount of heat to be transferred downward from the molten pool, variation of heat flux with the angular position, and the amount of removable heat by external cooling In this paper a thorough literature survey is made and relevant models and correlations are critically reviewed and applied in terms of their capabilities and uncertainties in estimating the thermal margin to potential failure of the vessel on account of the CHF Results of the thermal margin calculation are statistically treated and the associated uncertainties are quantitatively evaluated to shed light on the issues requiring further attention and study in the near term. Our results indicated a higher thermal margin at the bottom than at the top of the vessel accounting for the natural convection within the hemispherical molten debris pool in the lower plenum. The information obtained from this study will serve as the backbone in identifying the maximum heat removal capability and limitations of the IVR technology called the Cerium Attack Syndrome Immunization Structures (COASISO) being developed for next generation reactors.

  • PDF

An Empirical Study on the Bursting Properties According to Heat Treatment Condition of the CNG Pressure Vessel (CNG압력용기의 열처리 조건별 파열 특성에 관한 실증적 연구)

  • Kim, Eui Soo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.1-7
    • /
    • 2017
  • Forensic Engineering is the art and science of professionals qualified to serve as engineering experts in courts of law or in arbitration proceedings. Buses using compressed natural gas (CNG) trend to be extended in use internationally as optimal counterplan for reducing discharge gas of light oil due to high concern about environment. However, CNG buses is equipped with composite pressure vessels (CPVs); since the CPVs contain compressed natural gas, the risks in the case of accident is very high. In this study, the bursting test for the pressure vessel depending on the heat treatment conditions of the vessel in which the actual ruptured accident occurred, after the bursting test, the fracture pattern analysis had performed. The mechanical materials properties test using Instrumented Indentation Test had performed to confirm the mechanical properties for each heat treatment cases. Also, the fractography analysis and metallographic analysis had performed to find out the difference of each heat treatment case. By comparing normal vessel with abnormal vessel which have defect of heat treatment conditions in term of the bursting patterns and characteristics of containers using various forensic engineering methods, especially, it is possible to understand how important the heat treatment process is in the high pressure vessel unlike any product.

On the Actual Conditions of Manpower Supply in Seaman's Competency Certificate of Fishing Vessel Recently (최근의 어선 해기 인력 수급 실태에 관하여)

  • Kim, Yong-Bok;Kim, Jong-Hwa
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.3
    • /
    • pp.697-704
    • /
    • 2013
  • The aim of this paper is to represent about the actual conditions of manpower supply in seaman's competency certificate of fishing vessel. Data used here were based on Korea Seafarer's Statistical Year Book(2007~2011) issued by Ministry of Land, Transport, Maritime Affairs and Alma Mater of employed Seafarer's issued by Korea Seafarer's Welfare & Employment Center, and concerned various laws. The results are as follows : 1. The demanding officers(DO) in the present fishing vessels as minimum boarding standard of Ships Officers Act figured up 5,929 persons totally. Those are divided into officers of 2,988 persons and engineers of 2,941 persons. 2. Comparing DO with now boarding officer members, incase of Coastal & near-ocean fishing vessels exceeded approximately 11.5%(478 persons), but Ocean-going fishing vessels were short supply about 26.7%(477 persons). 3. In spite of ships officers' lacking in Ocean-going, boarding officers until now are only 3.5%(133 persons) annually of alma members in various fisheries schools.

Evaluation of the Crack Tip Fracture Behavior Considering Constraint Effects in the Reactor Pressure Vessel (구속효과를 고려한 원자로 압력 용기의 파괴거동 예측)

  • Kim, Jin-Su;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.908-913
    • /
    • 2000
  • In the process of integrity evaluation for nuclear power plant components, a series of fracture mechanics evaluation on surface cracks in reactor pressure vessel(RPV) must be conducted. These fracture mechanics evaluations are based on stress intensity factor, K. However, under pressurized thermal shock(PTS) conditions, the combination of thermal and mechanical stress by steep temperature gradient and internal pressure causes considerably high tensile stress at the inside of RPV wall. Besides, the internal pressure during the normal operation produces high tensile stress at the RPV wall. As a result cracks on inner surface of RPVs may experience elastic-plastic behavior which can be explained with J-integral. In such a case, however, J-integral may possibly lose its validity due to constraint effect. In this paper, in order to verify the suitability of J-integral, two dimensional finite element analyses were applied for various surface crack. Total of 18 crack geometries were analyzed, and Q stresses were obtained by comparing resulting HRR stress distribution with corresponding actual stress distributions. In conclusion, HRR stress fields were found to overestimate the actual crack-tin stress field due to constraint effect.

  • PDF