• Title/Summary/Keyword: Actual Running Vehicle Test

Search Result 17, Processing Time 0.023 seconds

A Study on Injector Durability Test with Diesel and BD20 Using Common Rail (커먼레일을 이용한 디젤과 BD20 연료가 인젝터에 미치는 영향에 관한 연구)

  • JEONG, YUNHO;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.393-401
    • /
    • 2015
  • The characteristics of diesel and biodiesel are similar like as cetane number and auto-ignition temperature. High cetane number of diesel and BD could make possible to compression ignition. but BD showed different atomization from diesel due to component like density, viscosity and iodine value etc. Because of this, the biodiesel requires validation. This study using diesel and BD20 investigated effect to durability injector. Durability test were used common rail and bosch solenoid type 5-hole injector. Total test was 672hr but actual running time was 200hr. Spray experiments for spray characteristics were carried out using constant volume combustion chamber. Spray characteristics of diesel and BD showed different result up to durability test time. After 100hr, diesel showed spray shapes were stable but BD was not. After 200hr, difference of diesel and BD spray shapes were grow serious.

Study on Establishment of Development Strategy for K-City Based on Analysis of Domestic and Overseas Automated Vehicle Testbeds (국내외 자율주행차 테스트베드 분석 기반 K-City 발전 전략 수립에 관한 연구)

  • Kim, Yejin;Park, Sangmin;Kim, Inyoung;Ko, Hangeom;Cho, Seongwoo;Yun, llsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.28-46
    • /
    • 2021
  • 85-90% of the causes of traffic accidents are human factors, and autonomous vehicles with little free running distance can be an alternative to prevent traffic accidents caused by human factors. However, securing safety of autonomous vehicles should be preceded in order to reduce traffic accident damage through the introduction of autonomous vehicles. Therefore, it is necessary to verify whether the vehicle can respond appropriately to changes in the road and traffic environment through repeated and reproduced test runs in an environment similar to the actual road. In this study, K-City's development strategies for upgrading, differentiating, and systematic development were established by comparing and analyzing the current status of domestic and foreign testbeds and business environment analysis. Furthermore, we derive challenge tasks to achieve each strategy.

A Study on the Simulation Modeling Method of LKAS Test Evalution (LKAS 시험평가의 시뮬레이션 모델링 기법에 관한 연구)

  • Bae, Geon-Hwan;Lee, Seon-bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.57-64
    • /
    • 2020
  • The leading technologies of the ADAS (Advanced Driver Assist System) are ACC (Advanced Cruise Control), LKAS (Lane Keeping Assist System), and AEB (Autonomous Emergency Braking). LKAS is a system that uses cameras and infrared sensors to control steering and return to its running lane in the event of unintentional deviations. The actual test is performed for a safety evaluation and verification of the system. On the other hand, research on the system evaluation method is insufficient when an additional steering angle is applied. In this study, a model using Prescan was developed and simulated for the scenarios proposed in the preceding study. Comparative analyses of the simulation and the actual test were performed. As a result, the modeling validity was verified. A difference between the front wheels and the lane occurred due to the return velocity. The results revealed a maximum error of 0.56 m. The error occurred because the lateral velocity of the car was relatively small. On the other hand, the distance from wheels to the lanes displayed a tendency of approximately 0.5 m. This can be verified reliably.

Signal Processing for MoC Brake Rattle Noise of Moving Vehicles Using Prony Analysis (프로니 분석을 이용한 주행 환경에서의 브레이크 래틀 소음 발생 특성 분석)

  • Lee, Jaecheol;Kwak, Yunsang;Park, Junhong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.4
    • /
    • pp.245-250
    • /
    • 2015
  • To verify the possibility of generating rattling noise from a motor on caliper brake system, a test was conducted using a caliper excited with vibrations similar to that in a vehicle running on actual roads; this test was conducted using a quiet shaker installed in an anechoic room. After several hours of external excitation, the test assembly was loosened, and the frequency of rattling noise generation increased. A microphone was used to record the generated noise. The measured signals were analyzed by conventional spectrum analysis. Since the noise is generated as an impact response, the advantages of employing Prony analysis was discussed, and the results were compared to those obtained using conventional fast Fourier transforms. The accuracy of Prony analysis was through endurance tests on different brake systems.

Evaluation of the Impact of Fuel Economy by Each of Driving Modes for Medium-Size Low-Floor Bus (중형저상버스의 개별주행모드에 따른 연료소비율 평가)

  • Jung, Jae-wook;Ro, Yun-sik;Ahn, Byong-kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.133-140
    • /
    • 2016
  • The Ministry of Land, Infrastructure and Transport has introduced low-floor buses, which are convenient for passengers getting on and off the bus and for the handicapped. The standard bus model is 11 m long and uses compressed natural gas (CNG). However, this model has drawbacks in narrow rural road conditions such as those in farming and fishing villages and mountainous areas, as well as difficulty in refueling since CNG facilities are not readily available. In this study, running resistance values were obtained by coasting performance tests on actual roads using a Tata Daewoo LF-40 model with three different weight conditions: curb vehicle weight (CVW), half vehicle weight (HVW), and gross vehicle weight (GVW).The test methods include WHVC, NIER-06, and constant-speed driving at 60 km/h. These tests were used to measure the fuel economy of vehicles other than the target vehicles to obtain the combined fuel economy. The energy efficiency was highest in the case of CVW. In the WHVC mode, the fuel consumption rates of HVW and GVW were typically 3.5% and 12% higher than that of CVW, respectively. In constant-speed driving, the fuel efficiency of HVW was higher than that of CVW. Further research is required to analyze the exhaust gas data.

The Monitoring Study of Exchange Cycle of Automatic Transmission Fluid (자동변속기유(ATF) 교환주기 모니터링 연구)

  • Lim, Young-Kwan;Jung, Choong-Sub;Lee, Jeong-Min;Han, Kwan-Wook;Na, Byung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.274-278
    • /
    • 2013
  • Automatic transmission fluid (ATF) is used as an automatic transmission in the vehicle or as a characterized fluid for automatic transmission. Recently, vehicle manufacturers usually guarantee for changing fluids over 80000~100000 km mileage or no exchange. However, most drivers usually change ATF below every 50000 km driving distance when driving in Republic of Korea according to a survey from the Korea Institute of Petroleum Management which can cause both a serious environmental contamination by the used ATF and an increase in the cost of driving. In this study, various physical properties such as flash point, pour point, kinematic viscosity, dynamic viscosity at low temperature, total acid number and four-ball test were investigated for both fresh ATF and used ATF after the actual vehicle driving distance of 50000 km and 100000 km. It was shown that most physical properties were suitable for the specification of ATF, but the foam characteristics of the used oil after running 100000 km was unsuitable for the specification of fresh ATF. Therefore, the exchange cycle of ATF every 80000~100000 km driving distance is recommended considering great positive contributions to preventing environmental pollution and reducing driving cost.

A Study on Relationship between Track Impact Factor and Track Support Stiffness of Turnout System on Urban Transit (도시철도 분기기 궤도구조의 궤도지지강성과 궤도충격계수의 상관관계에 관한 연구)

  • Choi, Jung-Youl;Park, Jong-Yoon;Lee, Kyu-Yong;Chung, Jee Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.461-466
    • /
    • 2020
  • In this study, the relationship between the track support stiffness and the track impact factor for a sleeper floating track and a turnout system with wood ties currently employed in Korean urban transit was assessed by performing field tests using actual vehicles running along the service lines. Field tests were performed on four track systems (i.e., sleeper floating track, and point, lead and crossing sections of turnout system). The theoretically designed track impact factor and track support stiffness were compared with the corresponding track impact factor and track support stiffness measured through field tests for the target tracks on the service line. The track impact factor for the service line appeared to increase with the deviation of track support stiffness according to vehicle driving direction; therefore, it was inferred that the deviation of track support stiffness between each track section directly affected the track impact factor.