• Title/Summary/Keyword: Activity stability

Search Result 2,146, Processing Time 0.024 seconds

Immobilization of Keratinase from Aspergillus flavus K-03 for Degradation of Feather Keratin

  • Kim, Jeong-Dong
    • Mycobiology
    • /
    • v.33 no.2
    • /
    • pp.121-123
    • /
    • 2005
  • Extracellular keratinase isolated from Aspergillus flavus K-03 was immobilized on calcium alginate. The properties and reaction activities of free and immobilized keratinase with calcium alginate were characterized. The immobilized keratinase showed proteolytic activity against soluble azo-casein and azo-keratin, and insoluble feather keratin. Heat stability and pH tolerance of keratinase were greatly enhanced by immobilization. It also displayed a higher level of heat stability and an increased tolerance toward alkaline pHs compared with free keratinase. During the durability test at $40^{\circ}C$, 48% of the original enzyme activity of the immobilized keratinase was remained after 7 days of incubation. The immobilized keratinase exhibited better stability, thus increasing its potential for use in industrial application.

Studies on the Cellulolytic Enzymes of Stachybotrys atra(I) (Stachybotrys atra에서 추출한 섬유소 분해효소에 관한 연구. I)

  • 김은수;김영민;강영희;최태주
    • Korean Journal of Microbiology
    • /
    • v.13 no.2
    • /
    • pp.59-63
    • /
    • 1975
  • When the enzyme preparations were at various temperatures for 1 hour, the thermal stability for the enzyme was maximum at $30{\circ}C.$ The optimum temperature for the enzyme activity was at $40{\circ}C.$ When the enzyme preparations were exposed to various pHs for 22 hours, the enzyme stability was maximum at pH 3.8, and it was decreased gradually as the pH rose up to 4.8, above which the stability was greatly restored. When the exposure period was extended from 22 to pH's 3.0 and 5.9, but the stability tended to rise at pH's below 3.0 and above 5.9. The optimum pH for the enzyme activity was obtained at 4.8.

  • PDF

Effect of Pt Particle Size on the Durability of PEMFC (연료전지 촉매의 입자크기가 내구성에 미치는 영향)

  • Min, Kyoung-Won;Kim, Hyun-Jong;Han, M.K.;U, Yu-Tae;Kim, Mok-Soon;Chu, Young-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.313-318
    • /
    • 2008
  • The influence of the particle size of platinum(Pt) on the stability and activity was studied. The particle size of platinum was controlled in the range of $3.5{\sim}9\;nm$ by heat treatment of commercial Pt/C and confirmed by XRD and TEM. An accelerated degradation test was performed to evaluate the stability of platinum catalysts. Oxygen reduction reaction was monitored for the measurement of activity. As increasing the Pt particle size, the stability of Pt/C electrode was enhanced and the activity was reduced. It was confirmed that the stability of Pt/C electrode was in inverse proportion to the activity. PtCo/C alloy catalyst was used to improve the activity and stability of large-sized platinum particle. The maximum power density of commercial Pt/C was $507.6\;mV/cm^2$ and PtCo/C alloy catalyst was $585.8\;mV/cm^2$. The decrement of electrochemical surface area showed Pt/C(60%) and PtCo/C alloy catalyst(24%). It was possible to enhance both of stability and activity of catalyst by the combination of particle size control and alloying.

Studies on the Activity Properties of Pd-only Three-Way Catalyst for the Purification of Automobile Exhaust Emissions (자동차 배기가스 정화용 Pb-only 삼원촉매의 활성특성에 관한 연구)

  • 신병선;김상수;이길우;정명근;배재호;정석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.667-676
    • /
    • 1999
  • The roles of ceria on three-way catalyst is to improve the noble metal dispersion and thermal stability of support ${\gamma}$-$Al_2O_3$. And, ceria has a oxygen storage capacity(OSC) under fuel rich/lean conditions to improve the operating windows of NOx, THC and CO conversion. However, ceria has weak thermal stability under high temperature due to the crystallite growth. So that, the OSC of ceria is decreased, and then the conversions of NOx, THC and CO is decreased. One way of enhancing the thermal stability and NOx, THC and CO conversion Pd-only catalyst is to improve as well as its thermal stability and oxygen storage capacity of the ceria. Especially, the appropriate mixing ratios of bulk and stabilized ceria are very important for designing principles of Pd-only three-way catalysts. In this paper, we discussed the thermal properties of stabilizedand unstabilized (bulk) ceria, and the oxygen storage capacity (OSC) of catalysts, and found the correlation between activity and the OSC of Pd-only catalysts with various different mixing ratios of bulk and stabilized ceria. Finally, we propose the design principles to improve the thermal stability of washcoated Pd-only catalysts.

  • PDF

The impact of overnight lairage on meat quality and storage stability of pork loin

  • Minwoo Choi;Dongheon Lee;Hyun Jung Lee;Ki-Chang Nam;Sung-Sil Moon;Jong Hyun Jung;Cheorun Jo
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.412-424
    • /
    • 2024
  • Lairage, a part of the animal welfare practices, has been known to mitigate pre-slaughter stress in animals. However, research investigating the relationship between lairage and pork meat quality remains scarce. In this study, we conducted a comparative analysis of the physicochemical quality and storage stability of pork from pigs subjected to immediate slaughter (CON) and those provided with a 24 h lairage before slaughter (LRG) over a 7-day storage period. The loins from 20 castrated pigs in each group, respectively, were collected at 1, 3, 5, and 7 days and used for analysis of meat quality and storage stability, including pH, meat color, moisture, water holding capacity, drip loss, cooking loss, shear force, fatty acid composition, lipid oxidation, antioxidant activity, and electrical resistance. Overall, there were no significant differences in physicochemical meat quality parameters between CON and LRG groups. Similarly, no differences were observed in the storage stability of pork including 2-thiobarbituric acid reactive substances, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and electrical resistance. However, the proportion of unsaturated fatty acids was significantly higher in LRG compared to CON. In conclusion, 24 h lairage for castrated pigs had limited impact on meat quality and storage stability but led to an increase in the unsaturated fatty acid proportion.

Characterization of Calcium-Activated Bifunctional Peptidase of the Psychrotrophic Bacillus cereus

  • Kim Jong-Il;Lee Sun-Min;Jung Hyun-Joo
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.237-243
    • /
    • 2005
  • The protease purified from Bacillus cereus JH108 has the function of leucine specific endopeptidase. When measured by hydrolysis of synthetic substrate (N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide), the enzyme activity exhibited optimal activity at pH 9.0, $60^{\circ}C$. The endopeptidase activity was stimulated by $Ca^{++},\;Co^{++},\;Mn^{++},\;Mg^{++},\;and\;Ni^{++}$, and was inhibited by metal chelating agents such as EDTA, 1,10-phenanthroline, and EGTA. Addition of serine protease inhibitor, PMSF, resulted in the elimination of the activity. The endopeptidase activity was fully recovered from the inhibition of EDTA by the addition of 1 mM $Ca^{++}$, and was partially restored by $Co^{++}\;and\;Mn^{++}$, indicating that the enzyme was stabilized and activated by divalent cations and has a serine residue at the active site. Addition of $Ca^{++}$ increased the pH and heat stability of endopeptidase activity. These results show that endopeptidase requires calcium ions for activity and/or stability. A Lineweaver-Burk plot analysis indicated that the $K_m$ value of endopeptidase is 0.315 mM and $V_{max}$ is 0.222 ) is $0.222\;{\mu}mol$ of N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide per min. Bestatin was shown to act as a competitive inhibitor to the endopeptidase activity.

Immobilization of Trypsin onto Silk Fibroin Fiber via Spacer Arms

  • Lee, Ki-Hoon;Kang, Gyung-Don;Shin, Bong-Seob;Park, Young-Hwan;Nahm, Joong-Hee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.2
    • /
    • pp.195-200
    • /
    • 2004
  • Trypsin can be immobilized on silk fibroin fiber (SFF) by introducing several spacer arms, such as ethylene diamine (ED), bovine serum albumin (BSA) and silk sericin (SS). Direct immobilization on silk fiber (SFFGA) has low activity because of the steric hindrance between the trypsin and substrate. The introduction of spacer arms onto SFF-GA can enhance the activity of trypsin by reducing the steric hindrance. When ED is used as a spacer arm, the activity of trypsin has increased but its stability decreased due to the increased hydrophobicity of SFF. BSA and SS, as a spacer arm, have better results in both activity and stability. SFF-BSA shows some decrease in the specific activity due to improper immobilizatin. SFF-SS maintained 90% of its initial activity even after 12 hrs incubation at $50^{\circ}C$. In the case of repeated hydrolysis of silk sericin with immobilized trypsin, SFF-GA and SFF-ED lost 50% of their initial activity right after first run, whereas SFF-BSA and SFF-SS maintained 80% of their initial activities even after 5 runs. Higher operational stability is due to increased hydrophilicity of SFF by introducing hydrophilic spacer arms such as BSA and SS. The high content of serine in SS increases the hydrophilicity of SFF resulting the best results among other spacer arms.

Development of Novel Small Chemical Inhibitors for Lck SH Domain with in vitro T-cell Inhibitory Activity

  • Park, See-Hyoung;Kang, Mi-Ae;Shim, Hyeong-Soo;Cho, Hyeong-Jin;Won, Jong-Hwa;Lee, Keun-Hyeung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1353-1358
    • /
    • 2006
  • We investigated in vitro T-cell inhibitory activity and bioavailability of small chemical inhibitors for Lck SH2 domain, which had a different scaffold such as an amide bond, reduced amide bond, N-methyl amide bond, thioamide bond, and urethane bond. Each of these compounds, with its particular scaffold, showed a different logP value, stability against serum enzyme, stability in buffer solution, and in vitro T-cell inhibitory activity. Overall results indicated that the SH2 inhibitor containing urethane bond can be a new lead compound because of its superior bioavailability, potent in vitro T-cell inhibitory activity, and facile synthesis.

Screening and Taxonomic Charactrization of D-Amino Acid Aminotransferase-producing Thermophiles (D-Amino Acid Aminotransferase 활성보유 고온성미생물의 탐색 및 분류학적 특성 연구)

  • 곽미선;이승구;정상철;서승현;이재흥;전영중;김영호;성문희
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.3
    • /
    • pp.184-190
    • /
    • 1999
  • To acquire an industrially useful biocatalyst for the enzymatic synthesis and production of various D-amino acid aminotransferase (D-AAT) activity. The enzyme activity was found from 110 strains of isolated thermophiles revealing its wide occurrence in thermophiles. Enzyme activity and thermal stability of the D-AAT producers were compared. Finally we have selected four thermophiles as producers of potent biocatalysts for the D-amino acid production; two thermophiles, Bacillus sp. Lk-1 and LK-2, having higher specific activity and two thermophiles, B. stearothermophilus KL-01 and Bacillus sp. KLS-01, having higher thermal stability than the D-AAT producers. Taxonomic and physiological characteristics of the four isolated thermophiles were described herein.

  • PDF

Simultaneous enhancement of thermostability and catalytic activity of phospholipase $A_1$ by evolutionary molecular engineering

  • Song, Jae-Kwang;Rhee, Joon-Shick
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.168-171
    • /
    • 2000
  • The thermal stability and catalytic activity of phospholipase A$_1$ from Serratia sp. MK1 were improved by an evolutionary molecular engineering. Two thermostable mutants were isolated after sequential rounds of error-prone PCR to introduce random mutations and filter-based screening of the resultant mutant library, and identified as having six (mutant TA3) and seven (mutant TA13) amino acid substitutions, respectively. Different types of the substitutions were found in two mutants, resulting in the increase of nonploar residues (mutant TA3) or changes between side chains within polar or charged residues (mutant TA13). The wild-type and mutant enzymes were purified, and the effect of temperature on their stability and catalytic activity was investigated. The T$\sub$m/ values of TA3 and TA13 were increased by 7 and 11$^{\circ}C$, respectively. Thus, evolutionary molecular engineering was found to be an effective and efficient approach to increasing thermostability without compromising enzyme activity.

  • PDF