• Title/Summary/Keyword: Activity Modeling

Search Result 608, Processing Time 0.03 seconds

Modeling of Microalgal Photosynthetic Activity Depending on Light Intensity, Light Pathlength and Cell Density (빛의 세기, 투과거리 및 세포농도에 따른 미세조류의 광합성 활성 모델링)

  • Yun, Yeong-Sang;Park, Jong-Mun
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.414-421
    • /
    • 1999
  • The influenced of light intensity, cell density, and light pathlength on photosynthetic activity of Chlorella vulgaris were investigated. Since the light respon curve varied according to reaction conditions, the parameters estimated from nonlinear regression were proved to be apparent and could not be applied to various situations. The light response model incorporating the light penetration through the microalgal suspension was developed based upon the spatial distribution of the photosynthetic activity. This model showed a good agreement with experimental data at different cell densities and light intensities. Using the model the effects of cell density and light pathlenth were simulated and some dicussions about optimization of operation conditions of photobioreactors were carried out. Concludingly, the developed model can be useful for predicting microalgal photosynthesis and for determining the optimal operating conditions.

  • PDF

QM and Pharmacophore based 3D-QSAR of MK886 Analogues against mPGES-1

  • Pasha, F.A.;Muddassar, M.;Jung, Hwan-Won;Yang, Beom-Seok;Lee, Cheol-Ju;Oh, Jung-Soo;Cho, Seung-Joo;Cho, Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.647-655
    • /
    • 2008
  • Microsomal prostaglandin E2 synthase (mPGES-1) is a potent target for pain and inflammation. Various QSAR (quantitative structure activity relationship) analyses used to understand the factors affecting inhibitory potency for a series of MK886 analogues. We derived four QSAR models utilizing various quantum mechanical (QM) descriptors. These QM models indicate that steric, electrostatic and hydrophobic interaction can be important factors. Common pharmacophore hypotheses (CPHs) also have studied. The QSAR model derived by best-fitted CPHs considering hydrophobic, negative group and ring effect gave a reasonable result (q2 = 0.77, r2 = 0.97 and Rtestset = 0.90). The pharmacophore-derived molecular alignment subsequently used for 3D-QSAR. The CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecular Similarity Indices Analysis) techniques employed on same series of mPGES-1 inhibitors which gives a statistically reasonable result (CoMFA; q2 = 0.90, r2 = 0.99. CoMSIA; q2 = 0.93, r2 = 1.00). All modeling results (QM-based QSAR, pharmacophore modeling and 3D-QSAR) imply steric, electrostatic and hydrophobic contribution to the inhibitory activity. CoMFA and CoMSIA models suggest the introduction of bulky group around ring B may enhance the inhibitory activity.

Characterization of Glycerol Dehydrogenase from Thermoanaerobacterium thermosaccharolyticum DSM 571 and GGG Motif Identification

  • Wang, Liangliang;Wang, Jiajun;Shi, Hao;Gu, Huaxiang;Zhang, Yu;Li, Xun;Wang, Fei
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1077-1086
    • /
    • 2016
  • Glycerol dehydrogenases (GlyDHs) are essential for glycerol metabolism in vivo, catalyzing its reversible reduction to 1,3-dihydroxypropranone (DHA). The gldA gene encoding a putative GlyDH was cloned from Thermoanaerobacterium thermosaccharolyticum DSM 571 (TtGlyDH) and expressed in Escherichia coli. The presence of Mn2+ enhanced its enzymatic activity by 79.5%. Three highly conserved residues (Asp171, His254, and His271) in TtGlyDH were associated with metal ion binding. Based on an investigation of glycerol oxidation and DHA reduction, TtGlyDH showed maximum activity towards glycerol at 60℃ and pH 8.0 and towards DHA at 60℃ and pH 6.0. DHA reduction was the dominant reaction, with a lower Km(DHA) of 1.08 ± 0.13 mM and Vmax of 0.0053 ± 0.0001 mM/s, compared with glycerol oxidation, with a Km(glycerol) of 30.29 ± 3.42 mM and Vmax of 0.042 ± 0.002 mM/s. TtGlyDH had an apparent activation energy of 312.94 kJ/mol. The recombinant TtGlyDH was thermostable, maintaining 65% of its activity after a 2-h incubation at 60℃. Molecular modeling and site-directed mutagenesis analyses demonstrated that TtGlyDH had an atypical dinucleotide binding motif (GGG motif) and a basic residue Arg43, both related to dinucleotide binding.

The longitudinal effects of children's temperament on maternal depression: A hierarchical linear modeling approach

  • Kim, Chul-Gyu;Choi, Mi-Young
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.28 no.1
    • /
    • pp.91-100
    • /
    • 2022
  • Purpose: This study aimed to identify the longitudinal effects of children's temperament on maternal depression. Methods: Data from a longitudinal cohort of the Panel Study of Korean Children (PSKC) from 2010 to 2012 were analyzed using hierarchical linear modeling. The survey included 1,721 mother-child dyads. The mothers reported on their children's temperament and on maternal depression. The children's temperament was measured by the Emotionality, Activity and Sociability-Temperament Survey for Children-Parental Ratings, while maternal depression was measured by the Kessler 6 Psychological Distress Scale. Results: The results showed that both children's temperament and maternal depression were relatively stable when the children were between the ages of 2 to 4. The mean maternal depression scores were 11.83 in 2010, 11.88 in 2011, and 11.75 in 2012. There were significant negative correlations between the maternal depression scores and children's ages, and sociability and activity subdomain scores ranged from r=-.05 to -.11 (p<.05). There was a significant positive correlation between children's emotionality subdomain scores and maternal depression scores (r=.35, p<.001). Children's temperament rament (emotionality: β=0.26, activity: β=-0.07, and sociability: β=-0.03) were significant factors in maternal depression. Conclusion: These findings indicate the need for the early assessment of and intervention for children's temperament and maternal depression. The results of this study will provide basic data for the development of nursing education programs related to early assessment and intervention to improve the health and quality of life of young children and mothers.

A SIMULATION MODEL FOR DECIDING AN OPTIMIZED 3D SHAPE OF CONSTRUCTION WORKSPACE CONSIDERING RESOURCES IN BIM ENVIRONMENT

  • Hyoun Seok Moon;Hyeon Seung Kim;Leen Seok Kang;Byung Soo Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.163-168
    • /
    • 2013
  • A construction workspace is considered as a critical factor to secure constructability and safety of a project. Specially, optimized size of each workspace helps to minimize any conflicts between workspaces, works and resources within a workspace in the construction site. However, since an existing method for making a decision workspace's size depends on generally experiences of managers and work conditions of activity, it is difficult to perform safe works considering feasible workspace size. The workspace size is changed according to the quantity of resources allocated into each activity as time progresses. Accordingly, it is desirable that optimized workspace size considering input size of resources is determined. To solve these issues, this study configures an optimized model for deciding standard size of workspaces by simple regression analysis and develops a visualized scenario model for simulating the optimized workspace shape in order to support BIM (Building Information Modeling) environment. For this, this study determines an optimized resource shape size considering maximum working radius of each resource and constructs its visual model. Subsequently, input size of resources for each activity is estimated considering safety execution area of resources and workspaces. Based on this, an optimized 3D workspace shape is generated as a VR simulation model of a BIM system based on the suggested methodologies. Moreover, operational feasibility of the developed system is evaluated through a case study for a bride project. Therefore, this study provides a visualized framework so that project managers can establish an efficient workspace planning in BIM environment. Besides, it is expected that constructability, productivity and safety of the project will be improved by minimizing conflicts between workspace and congestions between resources within a workspace in the construction phase.

  • PDF

Understanding of Group Modeling Process with Geological Field Trip applied on Social-Construction of Scientific Model: Focusing on Constraints (과학적 모델의 사회적 구성 수업을 적용한 야외지질학습에서 나타나는 조별 모델 구성과정 이해: 제약조건을 중심으로)

  • Choi, Yoon-Sung;Choi, Jong-Rim;Kim, Chan-Jong;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.303-320
    • /
    • 2017
  • Purpose of this study is understanding of group modeling process focusing on constraints with geological field trip applied on social-construction of scientific model. This study was carried out on 12 students of 3 groups who participate in the study 'S' gifted education center. Students were conducted to theme of 'How was formation of Mt. Gwanak?' on 2 field trip classes and 3 modeling classes. Semi-structured interviews, all discourse of field trip and modeling classes, records of personal and group activity were analyzed to constraints based on theoretical background proposed by Nersessian (2008). Results as follows. First, sources of constraints are scientific knowledge, contents observed by students during field trips and additional materials things to be explained by model during modeling class with geological field trip applied on social-construction of scientific model. Second, there are 3 types of constraints to affect making group modeling. It is that shared constraint which used commonly by all the group members. It called selected constraint that used during the initial modeling and later were reflected on for use in the group modeling. And it is that generated constraints, which were not in the initial modeling but were used later in the group modeling. This study suggests that not only the constraints can help to understand of making group model through how they used but also show that example of learning with geological field trip on social-construction of scientific model to contribute school science.

A Structural Equation Modeling of the Process of Science Related Career Choice (과학 관련 진로 선택 과정의 구조 방정식 모형)

  • Yoon, Jin;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.5
    • /
    • pp.517-530
    • /
    • 2003
  • The purpose of this study is to find out a model to explain the process of students' science-related career choice by identifying the causal relationships between science career choice and related factors. Important factors of science-related career choice were identified through factor analysis. 'Perception about career related to science', 'preference for science learning' and 'participation in science related activity' were three main factors of science-related career choice. A questionnaire was developed to know the factors of students' science-related career choice, and so as to make it possible to be analysed by structural equation modeling. The subject were 947 grade 6, 9, and 11 students in Seoul. Numbers of boys and girls in each grade was almost same. According to the structural equation modeling, 4 corrected models were obtained. In all 4 corrected models, 'perception about career related to science' had direct influence, and 'preference for science learning' and 'participation in science related activity' had indirect influence on science-related career choice. In the most fitting model. 'perception about career related to science' had an effect on science-related career choice with standardized total effect coefficient 1.03(direct effect 0.82, indirect effect 0.21). 'Preference for science learning', which influence 'participation in science related activity', had an effect on science-related career choice with standardized indirect effect coefficient 0.65. 'Participation in science related activity', which influence 'perception about career related to science'. had an effect on science-related career choice with standardized indirect effect coefficient 0.79. The implication to school science education is that it is most effective to raise the 'perception about career related to science' in order to make more students choose science related career. It is also effective to have more students participate in science related activity and enhance the preference for science learning. To explain the process of science related career choice more fully, it is necessary to build a more comprehensive model containing more factors influencing science-related career choice. It is necessary to test and complement the structural equation model by enlarging the subject to science high school students and science related college students.

Review of Ca Metabolic Studies and a Model for Optimizing Gastrointestinal Ca Absorption and Peak Bone Mass in Adolescents

  • Park, Jong-Tae;Cho, Byoung-Kwan;Lee, Wang-Hee
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.78-88
    • /
    • 2015
  • Purpose: The objective of this study is to review researches regarding factors that potentially affect adolescent calcium (Ca) metabolism, and to suggest a potential modeling approach for optimizing gastrointestinal Ca absorption and peak bone mass. Background: Optimal gastrointestinal Ca absorption is a key to maximizing peak bone mass in adolescents. Urine Ca excretion in adolescents rises only after bone accretion is saturated, indicating that higher intestinal Ca absorption and bone retention is necessary to ensure maximum bone accretion. Hence, maximizing peak bone mass is possible by controlling the factors influencing gastrointestinal Ca absorption and bone accretion. However, a mechanism that explains the unique adolescent Ca metabolism has not yet been elucidated. Review: Dietary factors that enhance gastrointestinal Ca absorption may increase the available Ca pool usable for bone accretion, and a specific hormone may direct optimal Ca utilization to maximize peak bone mass. IGF-1 is an endocrine hormone whose levels peak during adolescence and increase fractional Ca absorption and bone Ca accretion. Prebiotics, generally obtained from dietary sources, have been reported to exert a beneficial effect on Ca absorption via microbiota activity. We selected and reviewed three candidates that could be used to propose a comprehensive Ca metabolic model for optimal Ca absorption and peak bone mass in adolescents. Modeling: Modeling has been used to investigate Ca metabolism and its regulators. Herein, we reviewed previous Ca modeling studies. Based on this review, we proposed a method for developing a comprehensive model that includes regulatory effectors of IGF-1 and prebiotics.

A Study on Automatic Classification of Class Diagram Images (클래스 다이어그램 이미지의 자동 분류에 관한 연구)

  • Kim, Dong Kwan
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • UML class diagrams are used to visualize the static aspects of a software system and are involved from analysis and design to documentation and testing. Software modeling using class diagrams is essential for software development, but it may be not an easy activity for inexperienced modelers. The modeling productivity could be improved with a dataset of class diagrams which are classified by domain categories. To this end, this paper provides a classification method for a dataset of class diagram images. First, real class diagrams are selected from collected images. Then, class names are extracted from the real class diagram images and the class diagram images are classified according to domain categories. The proposed classification model has achieved 100.00%, 95.59%, 97.74%, and 97.77% in precision, recall, F1-score, and accuracy, respectively. The accuracy scores for the domain categorization are distributed between 81.1% and 95.2%. Although the number of class diagram images in the experiment is not large enough, the experimental results indicate that it is worth considering the proposed approach to class diagram image classification.

Modeling the long-term vegetation dynamics of a backbarrier salt marsh in the Danish Wadden Sea

  • Daehyun Kim
    • Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.49-62
    • /
    • 2023
  • Background: Over the past three decades, gradual eustatic sea-level rise has been considered a primary exogenous factor in the increased frequency of flooding and biological changes in several salt marshes. Under this paradigm, the potential importance of short-term events, such as ocean storminess, in coastal hydrology and ecology is underrepresented in the literature. In this study, a simulation was developed to evaluate the influence of wind waves driven by atmospheric oscillations on sedimentary and vegetation dynamics at the Skallingen salt marsh in southwestern Denmark. The model was built based on long-term data of mean sea level, sediment accretion, and plant species composition collected at the Skallingen salt marsh from 1933-2006. In the model, the submergence frequency (number yr-1) was estimated as a combined function of wind-driven high water level (HWL) events (> 80 cm Danish Ordnance Datum) affected by the North Atlantic Oscillation (NAO) and changes in surface elevation (cm yr-1). Vegetation dynamics were represented as transitions between successional stages controlled by flooding effects. Two types of simulations were performed: (1) baseline modeling, which assumed no effect of wind-driven sea-level change, and (2) experimental modeling, which considered both normal tidal activity and wind-driven sea-level change. Results: Experimental modeling successfully represented the patterns of vegetation change observed in the field. It realistically simulated a retarded or retrogressive successional state dominated by early- to mid-successional species, despite a continuous increase in surface elevation at Skallingen. This situation is believed to be caused by an increase in extreme HWL events that cannot occur without meteorological ocean storms. In contrast, baseline modeling showed progressive succession towards the predominance of late-successional species, which was not the then-current state in the marsh. Conclusions: These findings support the hypothesis that variations in the NAO index toward its positive phase have increased storminess and wind tides on the North Sea surface (especially since the 1980s). This led to an increased frequency and duration of submergence and delayed ecological succession. Researchers should therefore employ a multitemporal perspective, recognizing the importance of short-term sea-level changes nested within long-term gradual trends.