• Title/Summary/Keyword: Active tracking

Search Result 462, Processing Time 0.028 seconds

The control of an upper extremity exoskeleton for stroke rehabilitation: An active force control scheme approach

  • Majeed, Anwar P.P. Abdul;Taha, Zahari;Abdullah, Muhammad Amirul;Azmi, Kamil Zakwan Mohd;Zakaria, Muhammad Aizzat
    • Advances in robotics research
    • /
    • 제2권3호
    • /
    • pp.237-245
    • /
    • 2018
  • This study evaluates the efficacy of a class robust control scheme namely active force control in performing a joint based trajectory tracking of an upper limb exoskeleton in rehabilitating the elbow joint. The plant of the exoskeleton system is obtained via system identification method whilst the PD gains were tuned heuristically. The estimated inertial parameter that enables the AFC disturbance rejection effect is attained by means of a non-nature based metaheuristic optimisation technique known as simulated Kalman filter (SKF). It was demonstrated from the present investigation that the proposed PDAFC scheme outperformed the classical PD algorithm in tracking the prescribed trajectory both in the presence and without the presence of disturbance attributed by the mannequin limb weights (1 kg and 1.5 kg) that mimics the weight of actual human limb weight. Therefore, it is apparent from the results obtained from the present study that the proposed control scheme, i.e., PDAFC is suitable for the application of exoskeleton for stroke rehabilitation.

개인 인증을 위한 활성 윤곽선 모델 기반의 사람 외형 추출 및 추적 시스템 (ACMs-based Human Shape Extraction and Tracking System for Human Identification)

  • 박세현;권경수;김은이;김항준
    • 한국산업정보학회논문지
    • /
    • 제12권5호
    • /
    • pp.39-46
    • /
    • 2007
  • 최근 유비쿼터스 환경에서 개인 인증을 위한 연구가 활발하게 진행되고 있다. 그 중에서 걸음걸이 인식은 원거리에서 사람의 물리적인 특성을 이용하여 개인을 인증하는데 효과적인 방법이다. 본 논문에서는 걸음걸이 인식을 위해 평균 이동 알고리즘(mean shift algorithm)과 geodesic 활성 윤곽선 모델(active contour models) 기반의 사람 외형 추출 및 추적 시스템을 제안한다. 활성 윤곽선 모델은 움직이고, 변화하기 쉬운 물체를 다루는데 효과적이다. 그러나 활성 윤곽선 모델의 성능은 초기 커브에 의존적인 한계를 가지고 있다. 이 문제를 극복하기 위해 전형적인 geodesic 활성 윤곽선 모델에 평균 이동 알고리즘을 결합한다. 기본 개념은 진화시키기 전에 level set 방법을 사용하여 초기 커브를 사람 영역에 위치시키고, 그 영역을 충분히 둘러싸도록 크기를 조정한 후에 커브를 진화시킨다. 이러한 방법은 움직임이 큰 물체를 다루거나 진화 횟수를 줄이기 위해 효과적이다. 제안된 시스템은 사람 영역 검출 모듈과 사람 외형 추적모듈로 구성된다. 사람 영역 검출 모듈에서는 배경영상 제거(background subtraction)와 모폴로지 연산(morphologic operation)으로 사람의 실루엣을 검출한다. 이때, 사람의 외형은 평균 이동 알고리즘과 geodesic 활성 윤곽선 모델에 의해 정확하게 검출된다. 실험 결과에서 제안된 방법이 걸음걸이 인식(gait recognition)을 위해 사람의 외형을 효과적으로 정확하게 추출하고 추적됨을 보여준다.

  • PDF

Efficient Tracking of a Moving Object Using Representative Blocks Algorithm

  • Choi, Sung-Yug;Hur, Hwa-Ra;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.678-681
    • /
    • 2004
  • In this paper, efficient tracking of a moving object using optimal representative blocks is implemented by a mobile robot with a pan-tilt camera. The key idea comes from the fact that when the image size of moving object is shrunk in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object can be improved by changing the size of representative blocks according to the object image size. Motion estimation using Edge Detection(ED) and Block-Matching Algorithm(BMA) is often used in the case of moving object tracking by vision sensors. However these methods often miss the real-time vision data since these schemes suffer from the heavy computational load. In this paper, the optimal representative block that can reduce a lot of data to be computed, is defined and optimized by changing the size of representative block according to the size of object in the image frame to improve the tracking performance. The proposed algorithm is verified experimentally by using a two degree-of-freedom active camera mounted on a mobile robot.

  • PDF

Real Time Eye and Gaze Tracking

  • Park Ho Sik;Nam Kee Hwan;Cho Hyeon Seob;Ra Sang Dong;Bae Cheol Soo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.857-861
    • /
    • 2004
  • This paper describes preliminary results we have obtained in developing a computer vision system based on active IR illumination for real time gaze tracking for interactive graphic display. Unlike most of the existing gaze tracking techniques, which often require assuming a static head to work well and require a cumbersome calibration process for each person, our gaze tracker can perform robust and accurate gaze estimation without calibration and under rather significant head movement. This is made possible by a new gaze calibration procedure that identifies the mapping from pupil parameters to screen coordinates using the Generalized Regression Neural Networks (GRNN). With GRNN, the mapping does not have to be an analytical function and head movement is explicitly accounted for by the gaze mapping function. Furthermore, the mapping function can generalize to other individuals not used in the training. The effectiveness of our gaze tracker is demonstrated by preliminary experiments that involve gaze-contingent interactive graphic display.

  • PDF

구간선형기동 능동소나표적 탐지 추적 성능향상을 위한 허프변환 클러터제거 알고리즘 (Hough Transform Clutter Reduction Algorithm for Piecewise Linear Path Active Sonar Target Detection and Tracking Improvement)

  • 김성원
    • 한국음향학회지
    • /
    • 제32권4호
    • /
    • pp.354-360
    • /
    • 2013
  • 본 논문은 고밀도 클러터 환경에서 클러터 제거기능을 이용하여 구간선형기동 수중운동체의 탐지 및 추적에 대한 성능향상을 다루었다. 고밀도 클러터 환경에서 허프변환(Hough transform)을 이용한 클러터 제거 알고리즘을 통해 클러터 특성을 나타내는 측정치를 제거한 후 남은 측정치에 대해 추적 필터인 CMKF-L을 적용하여 추적성능을 확인하였다. 모의 신호와 해상실험데이터를 이용하여 실험을 수행하였으며 고밀도 클러터 환경에서 제안하는 알고리즘을 적용하여 클러터는 상당수 제거되고 표적에 대한 추적은 지속적으로 안정되게 수행됨을 확인하였다.

Effect Analysis of Virtual-reality Vestibular Rehabilitation based on Eye-tracking

  • Lee, Sungjin;Hong, Min;Kim, Sungyeup;Choi, Seong Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.826-840
    • /
    • 2020
  • Vertigo is one of the most common complaints encountered by physicians and the patients are steadily increasing. These patients are exposed to the risk of secondary accidents such as falls due to vertigo. There are two ways to improve this symptom: medication and rehabilitation. Although temporary symptomatic improvement may be expected in patients treated with medication, vertigo may recur and medication can delay central compensation. In contrast vestibular rehabilitation exploits central mechanisms of neuroplasticity to increase postural stability and enhance visual-vestibular interactions in situations that generate conflicting sensory information. However, vestibular rehabilitation may be compromised by incorrect performance of exercises, and there is a need for active effort and interest from the patient during rehabilitation. To solve these problems, we decided to apply FOVE HMD for eye-tracking and Unity3D to create virtual reality. The proposed eye-tracking based algorithm calculates the concentration of users with eye tracking data and calculates the motion width of the patient with nystagmus, thus the severity of the patient according to the score can be determined. According to our experimental test against healty group and patients group, this result showed the meaningful data to use define the contents result.

An attitude control of stabilizing system using indirect adaptive fuzzy control

  • Kim, Jae-Hoon;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1318-1326
    • /
    • 2014
  • The purpose of a tracking control system is to track a moving target and to find the exact information of the target. If the platform of the tracking control system is equipped on a moving vehicle such as a ship, the tracking control system will treat even the additional platform motion. In order to avoid the complexity comprising the tracking control system, a process to treat the platform motion, named stabilizing system, must be separated from the tracking control system. In this paper, a method to comprise an attitude control system for the platform stabilization is proposed using an adaptive fuzzy control which is applicable to the system with structural and parametric uncertainty. The suggested adaptive fuzzy control algorithm is the 2nd/1st-type indirect adaptive fuzzy control algorithm using the advantages of 1st-type and 2nd-type indirect adaptive fuzzy control algorithm. Several experiments using the implemented stabilizing system are executed for verifying the effectiveness of the suggested method.

추적 레이다의 대전자전 설계 (ECCM Design of Tracking Radar)

  • 김홍락;이만희;박성호;김윤진
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.51-57
    • /
    • 2024
  • 추적 레이다 시스템은 대양에서 운용 중인 함정 표적에 대하여 실시간으로 표적을 탐색, 탐지하여 추적하는 펄스방식의 추적 시스템이다. 함정에서는 추적 레이다를 혼란 또는 기만하기 위한 소프트 킬 동작을 통하여 스스로를 방어한 다. 소프트 킬 동작에는 수동적으로 동작하는 채프 등이 있고 능동적으로 동작하는 잡음 재밍 등 여러 동작들이 있다. 본 논문에서는 전자전에 대한 기본적인 개념을 이해하고 함정에서 운용중인 다양한 기만체계에 대하여 설명한다. 또한 각각의 기만체계를 대응하기 위한 레이다 시스템 설계에 대하여 설명한다.

반능동 현가시스템의 Robust 제어 법칙 (A Robust Semi-active Suspension Control Law)

  • 이경수;서명원;오태일
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.117-126
    • /
    • 1994
  • This paper deals with a robust semi-active control algorithm which is applicable to a semi-active suspension with a multi-state damper. Since the controllable damping rates are discrete in case of a multi-state semi-active damper, the desired damping rate can not be produced exactly even if force-velocity relations of a multi-state semi-active damper is completely known. In addition, damping characteristics of the semi-active dampers are different from damper to damper. A robust nonlinear control law based on sliding control is developed. The main objective of the proposed control strategies is to improve ride quality by tracking the desired active force with a multi-state damper of which the force-velocity relations are "not" completely known. The performance of th proposed semi-active control law is numerically compared to those of the control law based on a bilinear model and a passive suspension. The proposed control algorithm is robust to nonlinear characteristics and uncertainty of the force-Velocity relations of multi-state dampers.

  • PDF

A PI Control Algorithm with Zero Static Misadjustment for Tracking the Harmonic Current of Three-Level APFs

  • He, Yingjie;Liu, Jinjun;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.175-182
    • /
    • 2014
  • Tracking harmonic current quickly and precisely is one of the keys to designing active power filters (APF). In the past, the current state feedback decoupling PI control was an effective means for three-phase systems in the current control of constant voltage constant frequency inverters and high frequency PWM reversible rectifiers. This paper analyzes in detail the limitation of the conventional PI conditioner in the APF application field and presents a novel PI control method. Canceling the delay of one sampling period and the misadjustment for tracking the harmonic current is the key problem of this PI control. In this PI control, the predictive output current value is obtained by a state observer. The delay of one sampling period is remedied in this digital control system by the state observer. The predictive harmonic command current value is obtained by a repetitive predictor synchronously. The repetitive predictor can achieve better predictions of the harmonic current. By this means, the misadjustment of the conventional PI control for tracking the harmonic current is cancelled. The experiment results with a three-level NPC APF indicate that the steady-state accuracy and dynamic response of this method are satisfying when the proposed control scheme is implemented.