• Title/Summary/Keyword: Active tracking

Search Result 462, Processing Time 0.024 seconds

The Finite Control Set Model Predictive Torque Control Method for Surface Mounted Permanent Magnetic Synchronous Motor of Electric Vehicle (전기자동차용 표면 부착형 영구자석 동기 전동기의 토크제어를 위한 유한 제어 요소 모델 예측제어(FCS-MPC) 기법)

  • Park, Seong Hwan;Lee, Young Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.453-462
    • /
    • 2016
  • This paper proposes a torque control method for surface mounted permanent magnetic synchronous motor (PMSM) driven by a 2-level voltage source driven inverter, which has fast torque response and small torque ripple. The proposed torque control method follows the finite control set model predictive control (FCS-MPC) strategy. A reference state is derived at each time step for the given time varying torque reference and the cost index is defined so that the tracking error for this reference state should be penalized. The choice of an optimal output voltage vector is made first from the 6 possible active voltage vectors of the 2-level voltage source inverter. Then a modulation factor for the chosen optimal voltage vector is obtained so that the torque ripple can be reduced further. It is shown that the proposed FCS-MPC control method yields fast torque tracking response and small torque ripple through simulation and experiments.

Family of smart tuned mass dampers with variable frequency under harmonic excitations and ground motions: closed-form evaluation

  • Sun, C.;Nagarajaiah, S.;Dick, A.J.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.319-341
    • /
    • 2014
  • A family of smart tuned mass dampers (STMDs) with variable frequency and damping properties is analyzed under harmonic excitations and ground motions. Two types of STMDs are studied: one is realized by a semi-active independently variable stiffness (SAIVS) device and the other is realized by a pendulum with an adjustable length. Based on the feedback signal, the angle of the SAIVS device or the length of the pendulum is adjusted by using a servomotor such that the frequency of the STMD matches the dominant excitation frequency in real-time. Closed-form solutions are derived for the two types of STMDs under harmonic excitations and ground motions. Results indicate that a small damping ratio (zero damping is the best theoretically) and an appropriate mass ratio can produce significant reduction when compared to the case with no tuned mass damper. Experiments are conducted to verify the theoretical result of the smart pendulum TMD (SPTMD). Frequency tuning of the SPTMD is implemented through tracking and analyzing the signal of the excitation using a short time Fourier transformation (STFT) based control algorithm. It is found that the theoretical model can predict the structural responses well. Both the SAIVS STMD and the SPTMD can significantly attenuate the structural responses and outperform the conventional passive TMDs.

A Study on the Development of Multi-User Virtual Reality Moving Platform Based on Hybrid Sensing (하이브리드 센싱 기반 다중참여형 가상현실 이동 플랫폼 개발에 관한 연구)

  • Jang, Yong Hun;Chang, Min Hyuk;Jung, Ha Hyoung
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.355-372
    • /
    • 2021
  • Recently, high-performance HMDs (Head-Mounted Display) are becoming wireless due to the growth of virtual reality technology. Accordingly, environmental constraints on the hardware usage are reduced, enabling multiple users to experience virtual reality within a single space simultaneously. Existing multi-user virtual reality platforms use the user's location tracking and motion sensing technology based on vision sensors and active markers. However, there is a decrease in immersion due to the problem of overlapping markers or frequent matching errors due to the reflected light. Goal of this study is to develop a multi-user virtual reality moving platform in a single space that can resolve sensing errors and user immersion decrease. In order to achieve this goal hybrid sensing technology was developed, which is the convergence of vision sensor technology for position tracking, IMU (Inertial Measurement Unit) sensor motion capture technology and gesture recognition technology based on smart gloves. In addition, integrated safety operation system was developed which does not decrease the immersion but ensures the safety of the users and supports multimodal feedback. A 6 m×6 m×2.4 m test bed was configured to verify the effectiveness of the multi-user virtual reality moving platform for four users.

The Broadband Auto Frequency Channel Selection of the Digital TV Tuner using Frequency Mapping Function (주파수 매핑 함수를 이용한 광대역 주파수 자동 채널 선택용 디지털 TV 튜너)

  • 정영준;김재영;최재익;박재홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.613-623
    • /
    • 2000
  • Digital TV tuner for 8-VSB modulation was developed with satisfying the requirements of ATSC. The double frequency conversion and the active tracking filter in the front-end were used to reduce interference of the adjacent channels and multi-channels, which suppress If beat and image band. However, it was impossible to get frequency mapping between tracking filter and first VCO(Voltage Controlled Oscillator) in the double conversion digital TV tuner differing from conventional NTSC tuner. This paper, therefore, suggests the available structure and a new method for automatic frequency selection by obtaining the mapping of frequency characteristic over tracking voltage and the combined hardware which compose of Micro-controller, EEPROM, D/A(Digital-to-Analog Converter), OP amp and switch driver to solve above problems.

  • PDF

A Study on Swarm Robot-Based Invader-Enclosing Technique on Multiple Distributed Object Environments

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.806-816
    • /
    • 2011
  • Interest about social security has recently increased in favor of safety for infrastructure. In addition, advances in computer vision and pattern recognition research are leading to video-based surveillance systems with improved scene analysis capabilities. However, such video surveillance systems, which are controlled by human operators, cannot actively cope with dynamic and anomalous events, such as having an invader in the corporate, commercial, or public sectors. For this reason, intelligent surveillance systems are increasingly needed to provide active social security services. In this study, we propose a core technique for intelligent surveillance system that is based on swarm robot technology. We present techniques for invader enclosing using swarm robots based on multiple distributed object environment. The proposed methods are composed of three main stages: location estimation of the object, specified object tracking, and decision of the cooperative behavior of the swarm robots. By using particle filter, object tracking and location estimation procedures are performed and a specified enclosing point for the swarm robots is located on the interactive positions in their coordinate system. Furthermore, the cooperative behaviors of the swarm robots are determined via the result of path navigation based on the combination of potential field and wall-following methods. The results of each stage are combined into the swarm robot-based invader-enclosing technique on multiple distributed object environments. Finally, several simulation results are provided to further discuss and verify the accuracy and effectiveness of the proposed techniques.

Stereo System for Tracking Moving Object using Log-Polar Transformation and ZDF (로그폴라 변환과 ZDF를 이용한 이동 물체 추적 스테레오 시스템)

  • Yoon, Jong-Kun;Park, Il-;Lee, Yong-Bum;Chien, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.1
    • /
    • pp.61-69
    • /
    • 2002
  • Active stereo vision system allows us to localize a target object by passing only the features of small disparities without heavy computation for identifying the target. This simple method, however, is not applicable to the situations where a distracting background is included or the target and other objects are located on the zero disparity area simultaneously To alleviate these problems, we combined filtering with foveation which employs high resolution in the center of the visual field and suppresses the periphery which is usually less interesting. We adopted an image pyramid or log-polar transformation for foveated imaging representation. We also extracted the stereo disparity of the target by using projection to keep the stereo disparity small during tracking. Our experiments show that log-polar transformation is superior to either an image pyramid or traditional method in separating a target from the distracting background and fairly enhances the tracking performance.

A CONSTRUCTION OF THE REAL TIME MONITORING SYSTEM OF THE SOLAR RADIO DISTURBANCE 1. THE CONTROL SYSTEM OF THE RADIO TELESCOPE (태양전파 교란 실시간 모니터링 시스템 구축 1. 전파망원경 구동시스템)

  • 윤요나;이충욱;차상목;김용기
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.121-128
    • /
    • 2004
  • As the first step of the real time monitoring system of the solar radio disturbance, we constructed the control system of the solar radio telescope. An 1.8m antenna built by Korean Astronomy Observatory has been used, and the observed radio flux is transformed to the digital signal by the powermeter. We have also developed a computer program CBNUART in order to control the telescope system and the powermeter. As the sun rises, the telescope begins to observe the sun, and ends the observation automatically at sunset. The CBNUART enables the telescope automatically to go to the position of the sunrise for the beginning the observation and come back to the setposition after the ending the observation at the sunset. An active tracking routine is adopted in order to improve the tracking accuracy of the control system, and we used an optical telescope equipped in front of the antenna for control test. The tracking test shows that our control system can track with the accuracy of arc seconds, and the 50 minute pointing test shows that the pointing accuracy of right ascension and declination are 1.12 and 0.08 arc minutes respectively.

Improved ADALINE Harmonics Extraction Algorithm for Boosting Performance of Photovoltaic Shunt Active Power Filter under Dynamic Operations

  • Mohd Zainuri, Muhammad Ammirrul Atiqi;Radzi, Mohd Amran Mohd;Soh, Azura Che;Mariun, Norman;Rahim, Nasrudin Abd.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1714-1728
    • /
    • 2016
  • This paper presents improved harmonics extraction based on Adaptive Linear Neuron (ADALINE) algorithm for single phase photovoltaic (PV) shunt active power filter (SAPF). The proposed algorithm, named later as Improved ADALINE, contributes to better performance by removing cosine factor and sum of element that are considered as unnecessary features inside the existing algorithm, known as Modified Widrow-Hoff (W-H) ADALINE. A new updating technique, named as Fundamental Active Current, is introduced to replace the role of the weight factor inside the previous updating technique. For evaluation and comparison purposes, both proposed and existing algorithms have been developed. The PV SAPF with both algorithms was simulated in MATLAB-Simulink respectively, with and without operation or connection of PV. For hardware implementation, laboratory prototype has been developed and the proposed algorithm was programmed in TMS320F28335 DSP board. Steady state operation and three critical dynamic operations, which involve change of nonlinear loads, off-on operation between PV and SAPF, and change of irradiances, were carried out for performance evaluation. From the results and analysis, the Improved ADALINE algorithm shows the best performances with low total harmonic distortion, fast response time and high source power reduction. It performs well in both steady state and dynamic operations as compared to the Modified W-H ADALINE algorithm.

Development of the Planar Active Phased Array Radar System with Real-time Adaptive Beamforming and Signal Processing (실시간으로 적응빔형성 및 신호처리를 수행하는 평면능동위상배열 레이더 시스템 개발)

  • Kim, Kwan Sung;Lee, Min Joon;Jung, Chang Sik;Yeom, Dong Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.812-819
    • /
    • 2012
  • Interference and jamming are becoming increasing concern to a radar system nowdays. AESA(Active Electronically Steered Array) antennas and adaptive beamforming(ABF), in which antenna beam patterns can be modified to reject the interference, offer a potential solution to overcome the problems encountered. In this paper, we've developed a planar active phased array radar system, in which ABF, target detection and tracking algorithm operate in real-time. For the high output power and the low noise figure of the antenna, we've designed the S-band TRMs based on GaN HEMT. For real-time processing, we've used wavelenth division multiplexing technique on fiber optic communication which enables rapid data communication between the antenna and the signal processor. Also, we've implemented the HW and SW architecture of Real-time Signal Processor(RSP) for adaptive beamforming that uses SMI(Sample Matrix Inversion) technique based on MVDR(Minimum Variance Distortionless Response). The performance of this radar system has been verified by near-field and far-field tests.

Two-dimensional Velocity Measurements of Uvêrsbreen Glacier in Svalbard Using TerraSAR-X Offset Tracking Approach (TerraSAR-X 위성레이더 오프셋 트래킹 기법을 활용한 스발바르 Uvêrsbreen 빙하의 2차원 속도)

  • Baek, Won-Kyung;Jung, Hyung-Sup;Chae, Sung-Ho;Lee, Won-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.495-506
    • /
    • 2018
  • Global interest in climate change and sea level rise has led to active research on the velocities of glaciers. In studies about the velocity of glaciers, in-situ measurements can obtain the most accurate data but have limitations to acquire periodical or long-term data. Offset tracking using SAR is actively being used as an alternative of in-situ measurements. Offset tracking has a limitation in that the accuracy of observation is lower than that of other observational techniques, but it has been improved by recent studies. Recent studies in the $Uv{\hat{e}}rsbreen$ glacier area have shown that glacier altitudes decrease at a rate of 1.5 m/year. The glacier displacement velocities in this region are heavily influenced by climate change and can be important in monitoring and forecasting long-term climate change. However, there are few concrete examples of research in this area. In this study, we applied the improved offset tracking method to observe the two-dimensional velocity in the $Uv{\hat{e}}rsbreen$ glacier. As a result, it was confirmed that the glacier moved at a maximum rate of 133.7 m/year. The measruement precisions for azimuth and line-of-sight directions were 5.4 and 3.3 m/year respectively. These results will be utilized to study long-term changes in elevation of glaciers and to study environmental impacts due to climate change.