Browse > Article
http://dx.doi.org/10.7780/kjrs.2018.34.3.5

Two-dimensional Velocity Measurements of Uvêrsbreen Glacier in Svalbard Using TerraSAR-X Offset Tracking Approach  

Baek, Won-Kyung (Department of Geoinformatics, University of Seoul)
Jung, Hyung-Sup (Department of Geoinformatics, University of Seoul)
Chae, Sung-Ho (Department of Geoinformatics, University of Seoul)
Lee, Won-Jin (Earthquake and Volcano Research Division, Earthquake and Volcano Bureau, Korea Meteorological Administration (KMA))
Publication Information
Korean Journal of Remote Sensing / v.34, no.3, 2018 , pp. 495-506 More about this Journal
Abstract
Global interest in climate change and sea level rise has led to active research on the velocities of glaciers. In studies about the velocity of glaciers, in-situ measurements can obtain the most accurate data but have limitations to acquire periodical or long-term data. Offset tracking using SAR is actively being used as an alternative of in-situ measurements. Offset tracking has a limitation in that the accuracy of observation is lower than that of other observational techniques, but it has been improved by recent studies. Recent studies in the $Uv{\hat{e}}rsbreen$ glacier area have shown that glacier altitudes decrease at a rate of 1.5 m/year. The glacier displacement velocities in this region are heavily influenced by climate change and can be important in monitoring and forecasting long-term climate change. However, there are few concrete examples of research in this area. In this study, we applied the improved offset tracking method to observe the two-dimensional velocity in the $Uv{\hat{e}}rsbreen$ glacier. As a result, it was confirmed that the glacier moved at a maximum rate of 133.7 m/year. The measruement precisions for azimuth and line-of-sight directions were 5.4 and 3.3 m/year respectively. These results will be utilized to study long-term changes in elevation of glaciers and to study environmental impacts due to climate change.
Keywords
$Uv{\hat{e}}rsbreen$ glacier; offset tracking; two-dimensional velocity measurement;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Baek, W. K., 2017. Precise three-dimensional mapping of the 2016 Kumamoto earthquake through the integration of SAR interferometry and offset tracking, University of Seoul, Seoul, Korea.
2 Bennett, M. M. and N. F. Glasser, 2011. Glacial geology: ice sheets and landforms, John Wiley & Sons, Hoboken, NJ, USA.
3 Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti, 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375-2383.   DOI
4 Brandt, O., K. Langley, J. Kohler, and S. Hamran, 2007. Detection of buried ice and sediment layers in permafrost using multi-frequency Ground Penetrating Radar: A case examination on Svalbard, Remote Sensing of Environment, 111: 212-227.   DOI
5 Chae, S. H., 2016. An Improvement of SAR Offset Tracking Method to Observe Precise Surface Displacements, University of Seoul, Seoul, Korea.
6 Ferretti, A., C. Prati, and F. Rocca, 2001. Permanent scatterers in SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20.   DOI
7 Fialko, Y., M. Simons, and D. Agnew, 2001. The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw 7.1 Hector Mine earthquake, California, from space geodetic observations, Geophysical Research Letters, 28(16): 3063-3066.   DOI
8 Gray, L., I. Joughin, S. Tulaczyk, V. B. Spikes, R. Bindschadler, and K. Jezek, 2005. Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry, Geophysical Research Letters, 32(3).
9 Gray, L., 2011. Using multiple RADARSAT InSAR pairs to estimate a full three-dimensional solution for glacial ice movement, Geophysical Research Letters, 38(5).
10 Hamran, S., E. Aarholt, J. O. Hagen, and P. Mo, 1996. Estimation of relative water content in a subpolar glacier using surface-penetration radar, Journal of Glaciology, 42(142): 533-537.   DOI
11 Meyer, F., R. Bamler, N. Jakowski, and T. Fritz, 2006. The potential of low-frequency SAR systems for mapping ionospheric TEC distributions, IEEE Geoscience and Remote Sensing Letters, 3(4): 560-564.   DOI
12 Hu, J., Z. W. Li, X. L. Ding, J. J. Zhu, L. Zhang, and Q. Sun, 2014. Resolving three-dimensional surface displacements from InSAR measurements: A review, Earth-Science Reviews, 133: 1-17.   DOI
13 Humlum, O., A. Instanes, and J. L. Sollid, 2003. Permafrost in Svalbard: a review of research history, climatic background and engineering challenges, Polar Research, 22(2): 191-215.   DOI
14 Jo, M. J., H. S. Jung, J. S. Won, M. P. Poland, A. Miklius, and Z. Lu, 2015a. Measurement of slowmoving along-track displacement from an efficient multiple-aperture SAR interferometry (MAI) stacking, Journal of Geodesy, 89(5): 411-425.   DOI
15 Mattar, K. E., P. W. Vachon, D. Geudtner, A. L. Gray, I. G. Cumming, and M. Brugman, 1998. Validation of alpine glacier velocity measurements using ERS tandem-mission SAR data, IEEE Transactions on Geoscience and Remote Sensing, 36(3): 974-984.   DOI
16 McNabb, R. W., R. Hock, S. O'Neel, L. A. Rasmussen, Y. Ahn, M. Braun, H. Conway, S. Herreid, I. Joughin, W. T. Pfeffer, B. E. Smith, and M. Truffer, 2012. Using surface velocities to calculate ice thickness and bed topography: a case study at Columbia Glacier, Alaska, USA, Journal of Glaciology, 58(212): 1151-1164.   DOI
17 Jung, H. S., Z. Lu, and L. Zhang, 2013a. Feasibility of along-track displacement measurement from Sentinel-1 interferometric wide-swath mode, IEEE Transactions on Geoscience and Remote Sensing, 51(1): 573-578.   DOI
18 Jo, M. J., H. S. Jung, J. S. Won, M. P. Poland, and A. Miklius, 2015b. Measurement of three-dimensional surface deformation by Cosmo-SkyMed X-band radar interferometry: Application to the March 2011 Kamoamoa fissure eruption, Kílauea Volcano, Hawai'i, Remote Sensing of Environment, 169: 176-191.   DOI
19 Jonsson, S., H. Zebker, P. Segall, and F. Amelung, 2002. Fault slip distribution of the 1999 Mw7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements, Bulletin of the Seismological Society of America, 92(4): 1377-1389.   DOI
20 Jung, H. S., J. S. Won, and S. W. Kim, 2009. An improvement of the performance of multipleaperture SAR interferometry (MAI), IEEE Transactions on Geoscience and Remote Sensing, 47(8): 2859-2869.   DOI
21 Strozzi, T., A. Luckman, T. Murray, U. Wegmuller, and C. L. Werner, 2002. Glacier motion estimation using SAR offset-tracking procedures, IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2384-2391.   DOI
22 Nagler, T., H. Rott, M. Hetzenecker, J. Wuite, and P. Potin, 2015. The Sentinel-1 mission: New opportunities for ice sheet observations, Remote Sensing, 7(7): 9371-9389.   DOI
23 Nuth, C., 2007. Geodetic mass balance of Svalbard glaciers: 1936-2004, University of Oslo, Oslo, Norway.
24 Rott, H., M. Stuefer, A. Siegel, P. Skvarca, and A. Eckstaller, 1998. Mass fluxes and dynamics of Moreno Glacier, Southern Patagonia Icefield, Geophysical Research Letter, 25(9): 1407-1410.   DOI
25 Zebker, H. A. and J. Villasenor, 1992. Decorrelation in interferometric radar echoes, IEEE Transactions on Geoscience and Remote Sensing, 30(5): 950-959.   DOI
26 Luckman, A., 2014. Possible surge on Uversbreen from TerraSAR-X data, CRIOS Project, UNIS, http://feltlogg.blogspot.kr/2014/03/mulig-surgepa-uvêrsbreen-possible.html?m=0, Accessed on Mar. 13, 2018.
27 Jung, H. S., D. T. Lee, Z. Lu, and J. S. Won, 2013b. Ionospheric correction of SAR interferograms by multiple-aperture interferometry, IEEE Transactions on Geoscience and Remote Sensing, 51(5): 3191-3199.   DOI
28 Jung, H. S. and S. M. Hong, 2017. Mapping threedimensional surface deformation caused by the 2010 Haiti earthquake using advanced satellite radar interferometry, PLOS ONE, 12(11): e0188286.   DOI
29 Lee, W. J., H. S. Jung, S. H. Chae, and W. K. Baek, 2015. Enhancement of Ionospheric Correction Method Based on Multiple Aperture Interferometry, Korean Journal of Remote Sensing, 31(2): 101-110 (in Korean with English abstract).   DOI
30 Chae, S. H., W. J. Lee, H. S. Jung, and L. Zhang, 2017. Ionospheric Correction of L-Band SAR Offset Measurements for the Precise Observation of Glacier Velocity Variations on Novaya Zemlya, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(8): 3591-3603.   DOI