• Title/Summary/Keyword: Active tracking

Search Result 462, Processing Time 0.06 seconds

Development of Tracking Equipment for Real­Time Multiple Face Detection (실시간 복합 얼굴 검출을 위한 추적 장치 개발)

  • 나상동;송선희;나하선;김천석;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1823-1830
    • /
    • 2003
  • This paper presents a multiple face detector based on a robust pupil detection technique. The pupil detector uses active illumination that exploits the retro­reflectivity property of eyes to facilitate detection. The detection range of this method is appropriate for interactive desktop and kiosk applications. Once the location of the pupil candidates are computed, the candidates are filtered and grouped into pairs that correspond to faces using heuristic rules. To demonstrate the robustness of the face detection technique, a dual mode face tracker was developed, which is initialized with the most salient detected face. Recursive estimators are used to guarantee the stability of the process and combine the measurements from the multi­face detector and a feature correlation tracker. The estimated position of the face is used to control a pan­tilt servo mechanism in real­time, that moves the camera to keep the tracked face always centered in the image.

Multiple Target Management of Air-to-Air mode on Airborne AESA Radar (항공기 탑재 AESA 레이다의 공대공 모드 다표적 관리 기법)

  • Yong-min Kim;Ji-eun Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.580-586
    • /
    • 2023
  • AESA radar is able to instantaneously and adaptively position and control the beam, and this enables to greatly improve multi-target tracking capability with high accuracy in comparison to traditional mechanically-scanned radar system. This paper is primarily concerned with the development of an efficient methodology for multi-target managenent with the context of multi-target environment employing AESA radar. In this paper, targets are stratified into two principal categories: currently displayed targets and non-display targets, predicated upon their relative priority. Displayed targets are subsequently stratified into TOI (target of interest), HPT (high priority target), and SAT (situational awareness target), based on the requisite levels of tracking accuracy. It also suggests rules for determining target priority management, especially in air-to-air mode including interleaved mode. This proposed approach was tested and validated in a SIL (system integration lab) environment, applying it to AESA radars mounted on aircraft.

Implementation of AESA Radar Integration Analysis System by using Heterogeneous Media

  • Min-Jung Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.117-125
    • /
    • 2024
  • In this paper, implement and propose an Active Electronically Scanned Array (AESA) radar integration analysis system which specialized for radar development by using heterogeneous media. Most analysis systems are used to analyze and improve the cause of defects, so they help the test easier. However, previous log analysis systems that operate only based on text are not intuitive and difficult to find the information user want at once if there is a lot of log information. so when an equipment defect occurs, there are limitations in analyzing the cause of defect. Therefore, the analysis system in this paper utilizes heterogeneous media. The media defined in this paper refers to recording text-based data, displaying data as image or video and visualizing data. The proposed analysis system classifies and stores data that transmitted and received between radar devices, radar target detection and Tracking algorithm data, etc. also displays and visualizes radar operation results and equipment defect information in real time. With this analysis system, it can quickly provide information what user want and assistance in developing high quality radar.

Localizing Head and Shoulder Line Using Statistical Learning (통계학적 학습을 이용한 머리와 어깨선의 위치 찾기)

  • Kwon, Mu-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.141-149
    • /
    • 2007
  • Associating the shoulder line with head location of the human body is useful in verifying, localizing and tracking persons in an image. Since the head line and the shoulder line, what we call ${\Omega}$-shape, move together in a consistent way within a limited range of deformation, we can build a statistical shape model using Active Shape Model (ASM). However, when the conventional ASM is applied to ${\Omega}$-shape fitting, it is very sensitive to background edges and clutter because it relies only on the local edge or gradient. Even though appearance is a good alternative feature for matching the target object to image, it is difficult to learn the appearance of the ${\Omega}$-shape because of the significant difference between people's skin, hair and clothes, and because appearance does not remain the same throughout the entire video. Therefore, instead of teaming appearance or updating appearance as it changes, we model the discriminative appearance where each pixel is classified into head, torso and background classes, and update the classifier to obtain the appropriate discriminative appearance in the current frame. Accordingly, we make use of two features in fitting ${\Omega}$-shape, edge gradient which is used for localization, and discriminative appearance which contributes to stability of the tracker. The simulation results show that the proposed method is very robust to pose change, occlusion, and illumination change in tracking the head and shoulder line of people. Another advantage is that the proposed method operates in real time.

Technology Development for Non-Contact Interface of Multi-Region Classifier based on Context-Aware (상황 인식 기반 다중 영역 분류기 비접촉 인터페이스기술 개발)

  • Jin, Songguo;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.175-182
    • /
    • 2020
  • The non-contact eye tracking is a nonintrusive human-computer interface providing hands-free communications for people with severe disabilities. Recently. it is expected to do an important role in non-contact systems due to the recent coronavirus COVID-19, etc. This paper proposes a novel approach for an eye mouse using an eye tracking method based on a context-aware based AdaBoost multi-region classifier and ASSL algorithm. The conventional AdaBoost algorithm, however, cannot provide sufficiently reliable performance in face tracking for eye cursor pointing estimation, because it cannot take advantage of the spatial context relations among facial features. Therefore, we propose the eye-region context based AdaBoost multiple classifier for the efficient non-contact gaze tracking and mouse implementation. The proposed method detects, tracks, and aggregates various eye features to evaluate the gaze and adjusts active and semi-supervised learning based on the on-screen cursor. The proposed system has been successfully employed in eye location, and it can also be used to detect and track eye features. This system controls the computer cursor along the user's gaze and it was postprocessing by applying Gaussian modeling to prevent shaking during the real-time tracking using Kalman filter. In this system, target objects were randomly generated and the eye tracking performance was analyzed according to the Fits law in real time. It is expected that the utilization of non-contact interfaces.

The Impact of Transposable Elements in Genome Evolution and Genetic Instability and Their Implications in Various Diseases

  • Ayarpadikannan, Selvam;Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • v.12 no.3
    • /
    • pp.98-104
    • /
    • 2014
  • Approximately 45% of the human genome is comprised of transposable elements (TEs). Results from the Human Genome Project have emphasized the biological importance of TEs. Many studies have revealed that TEs are not simply "junk" DNA, but rather, they play various roles in processes, including genome evolution, gene expression regulation, genetic instability, and cancer disposition. The effects of TE insertion in the genome varies from negligible to disease conditions. For the past two decades, many studies have shown that TEs are the causative factors of various genetic disorders and cancer. TEs are a subject of interest worldwide, not only in terms of their clinical aspects but also in basic research, such as evolutionary tracking. Although active TEs contribute to genetic instability and disease states, non-long terminal repeat transposons are well studied, and their roles in these processes have been confirmed. In this review, we will give an overview of the importance of TEs in studying genome evolution and genetic instability, and we suggest that further in-depth studies on the mechanisms related to these phenomena will be useful for both evolutionary tracking and clinical diagnostics.

Modular Line-connected Photovoltaic PCS (모듈형 계통연계 태양광 PCS)

  • Seo, Hyun-Woo;Kwon, Jung-Min;Kim, Eung-Ho;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.119-127
    • /
    • 2008
  • In this paper, the modular line-connected photovoltaic PCS (photovoltaic power conditioning system) is proposed. A step-up DC-DC converter using a active-clamp circuit and a dual series-resonant rectifier is proposed to achieve a high efficiency and a high input-output voltage ratio efficiently. An IncCond (incremental conductance) MPPT (maximum power point tracking) algorithm that improves MPPT characteristic is used. The PV module current is estimated without using a DC current sensor. By control a inverter using a linearized output current controller, a unity power factor is achieved. All algorithms and controllers are implemented on a single-chip microcontroller and the superiority of the proposed DC-DC converter and controllers is proved by experiments.

Real Time Discrimination of 3 Dimensional Face Pose (실시간 3차원 얼굴 방향 식별)

  • Kim, Tae-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • In this paper, we introduce a new approach for real-time 3D face pose discrimination based on active IR illumination from a monocular view of the camera. Under the IR illumination, the pupils appear bright. We develop algorithms for efficient and robust detection and tracking pupils in real time. Based on the geometric distortions of pupils under different face orientations, an eigen eye feature space is built based on training data that captures the relationship between 3D face orientation and the geometric features of the pupils. The 3D face pose for an input query image is subsequently classified using the eigen eye feature space. From the experiment, we obtained the range of results of discrimination from the subjects which close to the camera are from 94,67%, minimum from 100%, maximum.

  • PDF

A Design and Implementation of Natural User Interface System Using Kinect (키넥트를 사용한 NUI 설계 및 구현)

  • Lee, Sae-Bom;Jung, Il-Hong
    • Journal of Digital Contents Society
    • /
    • v.15 no.4
    • /
    • pp.473-480
    • /
    • 2014
  • As the use of computer has been popularized these days, an active research is in progress to make much more convenient and natural interface compared to the existing user interfaces such as keyboard or mouse. For this reason, there is an increasing interest toward Microsoft's motion sensing module called Kinect, which can perform hand motions and speech recognition system in order to realize communication between people. Kinect uses its built-in sensor to recognize the main joint movements and depth of the body. It can also provide a simple speech recognition through the built-in microphone. In this paper, the goal is to use Kinect's depth value data, skeleton tracking and labeling algorithm to recognize information about the extraction and movement of hand, and replace the role of existing peripherals using a virtual mouse, a virtual keyboard, and a speech recognition.

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations I: COMS simulation case

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.221-228
    • /
    • 2015
  • To protect and manage the Korean space assets including satellites, it is important to have precise positions and orbit information of each space objects. While Korea currently lacks optical observatories dedicated to satellite tracking, the Korea Astronomy and Space Science Institute (KASI) is planning to establish an optical observatory for the active generation of space information. However, due to geopolitical reasons, it is difficult to acquire an adequately sufficient number of optical satellite observatories in Korea. Against this backdrop, this study examined the possible locations for such observatories, and performed simulations to determine the differences in precision of optical orbit estimation results in relation to the relative baseline distance between observatories. To simulate more realistic conditions of optical observation, white noise was introduced to generate observation data, which was then used to investigate the effects of baseline distance between optical observatories and the simulated white noise. We generated the optical observations with white noise to simulate the actual observation, estimated the orbits with several combinations of observation data from the observatories of various baseline differences, and compared the estimated orbits to check the improvement of precision. As a result, the effect of the baseline distance in combined optical GEO satellite observation is obvious but small compared to the observation resolution limit of optical GEO observation.