• Title/Summary/Keyword: Active surface area

Search Result 476, Processing Time 0.024 seconds

An Experimental Study on the Effects of Contact Angle on a Falling Liquid Film (접촉각이 유하액막 특성에 미치는 영향에 관한 실험적 연구)

  • Kim, Kyung-Hee;Kang, Byung-Ha;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.867-873
    • /
    • 2006
  • Vertical falling liquid film is extensively used in heat and mass transfer processes of many applications, such as evaporative coolers, cooling towers, and absorption chillers. In such cases, it is required that the falling film spreads widely in the surface forming thin liquid film to enlarge contact surface. An addition of surface active agent to a falling liquid film or hydrophilic surface treatment affects the fluid physical properties of the film. Surfactant addition not only decreases contact angle between the liquid and solid surface but also changes the surface from hydrophobicity to hydrophilicity. In this study, the effects of contact angle on falling film characteristics over a vertical surface have been investigated experimentally. The contact angle is varied either by an addition of surfactant to the liquid or by hydrophilic surface treatment. It is found that the wetted area is increased and film thickness is decreased by the hydrophilic treatment as compared with those of other surfaces. With this hydrophilic treatment, the falling liquid film spreads out widely in the surface. As surfactant concentration is increased, wetted area is also increased and the film thickness is substantially decreased.

Preparation and characterization of niobium carbide crystallites

  • Choi, Jeang-Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.3
    • /
    • pp.125-129
    • /
    • 2009
  • The preparation and characterization of niobium carbide crystallites were investigated in this study, and in particular, the effect of preparation conditions were studied on the synthesis of niobium carbides crystallites. For this purpose, various characterization techniques including x-ray diffraction, BET surface area, and oxygen uptake measurements were employed to characterize the synthesized niobium carbide crystallites. The niobium carbide crystallites were prepared using niobium oxide and methane gas or methane-hydrogen mixture. Using x-ray diffraction a lattice parameter of $4.45{\AA}$ and a crystallite size ranging from $52{\AA}$ to $580{\AA}$ was found. BET surface areas ranged from $3.2\;m^2/g$ to $16.6\;m^2/g$ and oxygen uptake values varied from $0.5{\mu}mol/g$ to $6.1{\mu}mol/g$. It was observed that niobium carbide crystallites were active for ammonia decomposition reaction. While the BET surface area increased with increasing the oxygen uptake, the conversion of ammonia decomposition reaction decreased. These results indicated that the ammonia decomposition over these materials was considered to be structure-sensitive.

Characteristics of Pt-Ru Catalyst Supported on Activated Carbon for Direct Methanol Fuel Cell

  • Jung, Doo-Hwan;Jung, Jae-Hoon;Hong, Seong-Hwa;Peck, Dong-Hyun;Shin, Dong-Ryul;Kim, Eui-sik
    • Carbon letters
    • /
    • v.4 no.3
    • /
    • pp.121-125
    • /
    • 2003
  • The Pt-Ru/Carbon as an anode catalyst supported on the commercial activated carbon (AC) having high surface area and micropore was characterized for application of Direct Methanol Fuel Cell (DMFC). The Pt-Ru/AC anode catalyst used in this experiment showed the performance of $600\;mA/cm^2$ current density at 0.3 V. The borohydride reduction process using $NaBH_4$, denoted as a process A, showed much higher current and power densities than process B prepared by changing the reduction and washing process of process A. The particle sizes are strongly affected by the reduction process than the specific surface area of raw active carbon and the sizes are almost constant when the specific surface area of carbon are over than the $1200\;m^2/g$. Smaller particle size of catalyst and more narrow intercrystalite distance increased the performance of DMFC.

  • PDF

Palladium Layers on an Au(111) Nanoparticle and Their Catalytic Activity to Formic Acid Oxidation

  • Kim, Byeong-Gwon;Seo, Dae-Ha;Song, Hyeon-Jun;Gwak, Ju-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.206-206
    • /
    • 2011
  • Nanoparticles have been received great attention from many researchers for several decades because of their good and unique properties. In particular, researches in the field of synthesis of bimetallic nanoparticles showed good results for the past ten years. In this research, Pd thinlayer on Au nanoparticles were synthesized by electrochemical deposition method. Well-defined Au(111) nanoparticles were synthesized by solution based reduction method. Electrochemical deposition conditions for Pd thinlayer on Au(111) nanoparticles surface were carefully regulated by controlling parameters of cyclic voltammetry. To calculate exact mass and surface area catalytic activities of deposited Pd thinlayer on Au(111) nanoparticle, electrochemically active surface area (ECSA) and mass of the deposited Pd thinlayer were measured by cyclic voltammetry in 0.1 M HClO4 solution. Afterward, catalytic activities of the deposited Pd thinlayer were measured in 0.1 M HClO4 + 0.2 M formic acid solution. In case of less negative deposition potential, the amounts of deposited Pd mass and surface area were small. However, mass and ECSA activity of the deposited Pd to oxidize formic acid were increased.

  • PDF

Effect of Physico-chemical Properties of Pt/TiO2 Catalyst on CO Oxidation at Room Temperature (Pt/TiO2 촉매의 물리화학적 특성이 CO 상온산화 반응에 미치는 영향 연구)

  • Kim, Sung Chul;Kim, Geo Jong;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.657-662
    • /
    • 2018
  • In this study, the effect of $Pt/TiO_2$ catalysts on the CO oxidation reaction at room temperature was investigated using various $TiO_2$ supports with different physical properties to compare and evaluate $Pt/TiO_2$ catalysts. Physicochemical properties of the catalyst were alanyzed using XPS, CO-chemisorption, BET, and CO-TPD. As a result, when the active particle diameter was smaller, while the metal dispersion and surface area were larger, the CO room temperature oxidation reaction was better. These physical properties increased the number of active sites, causing the target material to increase the adsorption amount of CO. In addition, when the $O_2$-consumption increased, the CO-room temperature oxidation reaction activity increased due to the excellent oxygen-transferring ability.

Cast Shadow Extraction of Mountainous Terrain in Satellite Imagery (위성영상에서 산악지역의 그림자 추출)

  • 손홍규;윤공현;송영선
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.309-312
    • /
    • 2004
  • In mountainous area with high relief, topography may cause cast shadows due to the blocking of direct solar radiation. Remote sensing images of these landscapes display reduced values of reflectance for shadowed areas compared to non-shadowed areas with similar surface cover characteristics. A variety of approaches are possible, though a common step in various active approaches is first to delineate the shadows using automated algorithm and digital surface model (or digital elevation model). This articles demonstrates a common confusion caused by cast shadows

  • PDF

Kinetics of In-situ Degradation of Nerve Agent Simulants and Sarin on Carbon with and without Impregnants

  • Saxena, Amit;Sharma, Abha;Singh, Beer;Suryanarayana, Malladi Venkata Satya;Mahato, Timir Haran;Sharma, Mamta;Semwal, Rajendra Prasad;Gupta, Arvind Kumar;Sekhar, Krishnamurthy
    • Carbon letters
    • /
    • v.6 no.3
    • /
    • pp.158-165
    • /
    • 2005
  • Room temperature kinetics of degradation of nerve agent simulants and sarin, an actual nerve agent at the surface of different carbon based adsorbent materials such as active carbon grade 80 CTC, modified whetlerite containing 2.0 and 4.0 % NaOH, active carbon with 4.0 % NaOH, active carbon with 10.0 % Cu (II) ethylenediamine and active carbon with 10.0 % Cu (II) 1,1,1,5,5,5-hexafluoroacetylacetonate were studied. The used adsorbent materials were characterized for surface area and micropore volume by $N_2$ BET. For degradation studies solution of simulants of nerve agent such as dimethyl methylphosphonate (DMMP), diethyl chlorophosphate (DEClP), diethyl cyanophosphate (DECnP) and nerve agent, i.e., sarin in chloroform were prepared and used for the uniform adsorption on the adsorbent systems using their incipient volume at room temperature. Degradation kinetics was monitored by GC/FID and was found to be following pseudo first order reaction. Kinetics parameters such as rate constant and half life were calculated. Half life of degradation with modified whetlerite (MWh/NaOH) system having 4.0 % NaOH was found to be 1.5, 7.9, 1206 and 20 minutes for DECnP, DEClP, DMMP and sarin respectively. MWh/NaOH system showed maximum degradation of simulants of nerve agents and sarin to their hydrolysis products. The reaction products were characterized using NMR technique. MWh/NaOH adsorbent was also found to be active against sulphur mustard.

  • PDF

Representative Volume Element Analysis of Fluid-Structure Interaction Effect on Graphite Powder Based Active Material for Lithium-Ion Batteries

  • Yun, Jin Chul;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • In this study, a finite element analysis approach is proposed to predict the fluid-structure interaction behavior of active materials for lithium-ion batteries (LIBs), which are mainly composed of graphite powder. The porous matrix of graphite powder saturated with fluid electrolyte is considered a representative volume element (RVE) model. Three different RVE models are proposed to consider the uncertainty of the powder shape and the porosity. P-wave modulus from RVE solutions are analyzed based on the microstructure and the interaction between the fluid and the graphite powder matrix. From the results, it is found that the large surface area of the active material results in low mechanical properties of LIB, which leads to poor structural durability when subjected to dynamic loads. The results obtained in this study provide useful information for predicting the mechanical safety of a battery pack.

The Adsorption Characteristics of a Granular Active Carbon by the Physical Properties (입상 활성탄의 물리적특성 변화에 따른 흡착특성)

  • 김덕기;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.84-89
    • /
    • 1996
  • The adsorption characteristics of active carbon used as a cartridge filler of organic vapor respirator were examined by humidity, particle size, challenge concentration and specific surface area. As a result, the 1% breakthrough time of Carbon Tetrachloride($CCl_4$) was decreased with increase of relative humidity, challenge concentration and particle size (0.6~2.0mm) of active carbon. The adsorbed amount of $CCl_4$ was about 1. 1mg/$m^2$ at RH 40% and 0. 5mg/$m^2$ at RH 80% . However in the case of prehumidified active carbon, humidity did not affected to 1% breakthrough time up to RH 40%.

  • PDF

Comparison of Catalytic Activity for Methanol Electrooxidation Between Pt/PPy/CNT and Pt/C

  • Lee, C.G.;Baek, J.S.;Seo, D.J.;Park, J.H.;Chun, K.Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.240-245
    • /
    • 2010
  • This work explored the catalytic effect of Pt in multi-wall carbon nanotube and poly-pyrrole conductive polymer electrocatalysts (Pt/PPy/MWCNT). A home-made Pt/PPy/MWCNT catalyst was first evaluated by comparing its electrochemical active surface area (ESA) with E-Tek commercial catalysts by cyclic voltammetry in $H_2SO_4$ solution. Then, the methanol oxidation currents of Pt/PPy/MWCNT and the hydrogen peaks in $H_2SO_4$ solution were serially measured with microporous electrode. This provided the current density of methanol oxidation based on the ESA, allowing a quantitative comparison of catalytic activity. The current densities were also measured for Pt/C catalysts of E-Tek and Tanaka Precious Metal Co. The current densities for the different catalysts were similar, implying that catalytic activity depended directly on the ESA rather than charge transfer or electronic conductivity.