• Title/Summary/Keyword: Active surface area

Search Result 476, Processing Time 0.026 seconds

Synthesis of Mesoporous Titanium Dioxide Nanoparticles and Their Application into Dye Sensitized Solar Cells (다공성 산화타이타늄 나노입자 합성과 염료감응형 태양전지 응용)

  • Kim, Whidong;Ahn, Jiyoung;Kim, Soohyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.64.2-64.2
    • /
    • 2010
  • In order to improve the overall power conversion efficiency in dye-sensitized solar cells (DSSCs), it is very important to secure the sufficient surface area of photocatalytic nanoparticles layer for absorbing dye molecules. It is because increasing the amount of dye absorbed generally results in increasing the amount of light harvesting. In this work, we proposed a new method for increasing the specific surface area of photocatalytic titanium oxide ($TiO_2$) nanoparticles by using an inorganic templating method. Salt-$TiO_2$ composite nanoparticles were synthesized in this approach by spray pyrolyzing both the titanium butoxide and sodium chloride solution. After aqueous removal of salt from salt-$TiO_2$ composite nanoparticles, mesoporous $TiO_2$ nanoparticles with pore size of 2~50 nm were formed and then the specific surface area of resulting porous $TiO_2$ nanoparticle was measured by Brunauer-Emmett-Teller (BET) method. Generally, commercially available P-25 with the average primary size of ~25 nm $TiO_2$ nanoparticles was used as an active layer for dye-sensitized solarcells, and the specific surface area of P-25 was found to be ~50 $m^2/g$. On the other hand, the specific surface area of mesoporous $TiO_2$ nanoparticles prepared in this approach was found to be ~286 $m^2/g$, which is 5 times higher than that of P-25. The increased specific surface area of $TiO_2$ nanoparticles will absorb relatively more dye molecules, which can increase the short curcuit current (Jsc) in DSSCs. The influence of nanoporous structures of $TiO_2$ on the performance of DSSCs will be discussed in terms of the amount of dye molecules absorbed, the fill factor, the short circuit current, and the power conversion efficiency.

  • PDF

Relationship among Physical & Chemical Properties of Supports and Performance of Methane Fermentation in Anaerobic Fluidized-Bed Reactor (혐기성 유동층 반응기에서 지지체의 물리.화학적 특성과 메탄 발효 성능 사이의 관계)

  • 조무환;남영섭정재학김정목
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.431-437
    • /
    • 1993
  • Active carbon which has the smallest bulk and wet density was found as the best support media among 4 different kinds of materials(celite, natural zeolite, Pusuk stone, active carbon) to make a proper fluidized-bed with small energy consumption. Its minimum and optimum fluidization velocity were found as 0.03cm/sec and 0.25cm/sec, respectively. As organic loading rate for methane fermentation was increased, CODcr removal efficiencies of all the media were decreased. But, CODcr, removal efficiencies of active carbon was maintained more than 90% in this experimental range of the organic loading rate. Larger amount of microorganism was adsorbed on the active carbon which has very high specific surface area. At the organic loading rate of 16g CODcr,/l day, its adsorbed cell mass was 157mg/g. Comparing natural zeolite with roast celite, adsorbed cell mass did not increase in proportion to specific surface area of the media. Even though roast celite has the same specific surface area as the Pusuk stone, its organic removal ability was superior to that of the Pusuk stone, which explains that the relatively great surface roughness and the positive surface charge are important for cell adsorption. It was concluded that the support media for anaerobic fluidized reactor should have small wet density and small fuidization velocity, if possible, in order to increase cell adsorption by reducing the fluid shear stress.

  • PDF

Characteristic recovery of active carbon waste treated by microwave (Microwave에 의한 정수장 폐활성탄의 복원 특성)

  • Lee, Bum-Suk;Kim, Taik-Nam;Kim, Jong-Ock
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.93-107
    • /
    • 2002
  • The active carbon waste which was used in water purification plant was investigated for the improvement of capillary after microwave treatment. The variation of surface area was measured with the various kinds and amounts of active carbon. The water vapor as the activator was verified to improve the capillary but it reacted with the water contained in waste active carbon. In contrast to the water vapor, the $CO_2$ gas improved the surface area about 10-20 % compared to as received one. The best results was observed at the intensity of 2.75 kw microwave. The more effective recovery of active carbon waste was observed at the microwave treatment compared to the rotary kiln treatment. However, the mass production is so difficult in the microwave process.

  • PDF

Size Control of Bismuth Nanoparticles by Changes in Carrier-Gas Flow Rate and Chamber Pressure of Gas Condensation Apparatus (가스응축장치 캐리어가스 공급속도 및 압력변화를 통한 비스무스 나노분말 입도제어)

  • Lee, Gyoung-Ja;Kim, Chang-Kyu;Lee, Min-Ku;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.379-384
    • /
    • 2010
  • In the present work, bismuth nanopowders with various particle size distributions were synthesized by controlling argon (Ar) gas flow rate and chamber pressure of a gas condensation (GC) apparatus. From the analyses of transmission electron microscopy (TEM) images and nitrogen gas adsorption results, it was found that as Ar gas flow rate increased, the specific surface area of bismuth increased and the average particles size decreased. On the other hand, as the chamber pressure increased, the specific surface area of bismuth decreased and the average particles size increased. The optimum gas flow rate and chamber pressure for the maximized electrochemical active surface area were determined to be 8 L/min and 50 torr, respectively. The bismuth nanopowders synthesized at the above condition exhibit 13.47 $m^2g^{-1}$ of specific surface area and 45.6 nm of average particles diameter.

Experimental Investigation of the Effect of Composition on the Performance and Characteristics of PEM Fuel Cell Catalyst Layers

  • Baik, Jung-Shik;Seong, Dong-Mug;Kim, Tae-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.157-160
    • /
    • 2007
  • The catalyst layer of a proton exchange membrane (PEM) fuel cell is a mixture of polymer, carbon, and platinum. The characteristics of the catalyst layer play critical role in determining the performance of the PEM fuel cell. This research investigates the role of catalyst layer composition using a Central Composite Design (CCD) experiment with two factors which are Nafion content and carbon loading while the platinum catalyst surface area is held constant. For each catalyst layer composition, polarization curves are measured to evaluate cell performance at common operating conditions, Electrochemical Impedance Spectroscopy (EIS), and Cyclic Voltammetry (CV) are then applied to investigate the cause of the observed variations in performance. The results show that both Nafion and carbon content significantly affect MEA performance. The ohmic resistance and active catalyst area of the cell do not correlate with catalyst layer composition, and observed variations in the cell resistance and active catalyst area produced changes in performance that were not significant relative to compositions of catalyst layers.

  • PDF

Regeneration of Used Commercial Catalyst for deNOx Emitted from Stationary Sources (배연 탈질용 폐촉매의 재생에 관한 연구)

  • Moon, Il-Shik;Cho, Gyoujin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.263-267
    • /
    • 1999
  • NO removal activity (per unit of mass) of the used catalyst was seriously decreased as low as 27% of the new catalyst. Since the surface area of the used catalyst was 63% of that of the new one, the mojor reason for the lessened activity of the used catalyst compared to the new one may be due to the decreased surface area by sintering and surface concentration of active materials. Poison may be regarded as another important factor, since it affect the active site of catalyst by heavy metals. To recycle the used catalyst, we focused on the removal of poisoning agents from the catalyst. By using $80^{\circ}C$ water for 30 min upto 2 h, the recycled catalyst demonstrated the best activity and efficiency, which may be due to the removal of both K and Na. Although the recovered activity (per unit of surface area) of the catalyst was 79% compared to the new one, the activity (per unit of mass) of the recovered catalyst was only 49% compared of the activity of fresh catalyst.

  • PDF

Statistical Model to Describe Boiling Phenomena for High Heat Flux Nucleate Boiling and Critical Heat Flux

  • Ha, Sang-Jun;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.230-235
    • /
    • 1996
  • The new concept of dry area formation based on Poisson distribution of active nucleation sites and the concept of the critical active site density is presented. A simple statistical model is developed to predict the change of slope of the boiling curve up to critical heat flux (CHF) quantitatively. The predictions by the present model are in good agreement with the experimental data. Also it turns out that the present model well explains the mechanism on how the surface wettability influences CHF.

  • PDF

The Characteristics of suspended particulate matter and surface sediment of C, N in the Northern East China Sea ill summer (제주도 서남방 동중국해에서 하계 입자성부유물 및 표층퇴적물의 C, N 분포 특성)

  • KANG Mun Gyu;CHOI Young Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.13-23
    • /
    • 2003
  • Organic carbon and nitrogen contents in suspended particulate matter (SPM) and surface sediments in seawater were measured in the Northern East China Sea in summer. The distribution of particulate organic carbon(POC) and particulate organic nitrogen(PON) were in the ranges of 54~481㎍/ℓ and 6~85㎍/ℓ, respectively, with relatively high level of concentrations in the western and southern sides of the study area. Also, there has been a significantly positive correlation between POC and PON, gradually increasing toward the deeper range of depth. Average C:N ratios of POC and PON of SPM were 6 in study area. The ratios of POC to PON of SPM increased as the range of depth increased, indicating nitrogen decomposes more rapidly than carbon and is considered to be influenced by the input of detritus from surface sediments. The distribution of total organic matter(TOM), total organic carbon(TOC) and total organic nitrogen(TON) in surface sediments were in the ranges of 3.1~9.6%, 0.282~0.635% and 0.022~0.069%, respectively, with relatively low range in the western and northern sides of the study area. The ratio of TOC to TON of surface sediments were in the range of 9.8~17.4(average of 13), strongly indicating the active role of the input from the terrestrial organic pollutants.

  • PDF

Highly Sensitive and Selective Glucose Sensor Realized by Conducting Polymer Modified Nanoporous PtZn Alloy Electrode

  • Jo, Hyejin;Piao, Hushan;Son, Yongkeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 2013
  • Platinum is a well known element which shows a significant electrocatalytic activity in many important applications. In glucose sensor, because of the poisoning effect of reaction intermediates and the low surface area, the electrocatalytic activity towards the glucose oxidation is low which cause the low sensitivity. So, we fabricate a nanoporous PtZn alloy electrode by deposition-dissolution method. It provides a high active surface and a large enzyme encapsulating space per unit area when it used for an enzymatic glucose sensor. Glucose oxidase was immobilized on the electrode surface by capping with PEDOT composite and PPDA. The composite and PPDA also can exclude the interference ion such as ascorbic acid and uric acid to improve the selectivity. The surface area was determined by cyclic voltametry method and the surface structure and the element were analyzed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX), respectively. The sensitivity is $13.5{\mu}A/mM\;cm^2$. It is a remarkable value with such simply prepared senor has high selectivity.

Platinum Decoration of a 3D Oxidized Graphitic Carbon Nitride/Graphene Aerogel for Enhanced Visible-Light Photocatalytic Hydrogen Evolution

  • Thi Kieu Oanh Nguyen;Thanh Truong Dang;Tahereh Mahvelati-Shamsabadi;Jin Suk Chung
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.627-634
    • /
    • 2023
  • Graphitic carbon nitride (g-C3N4) has attracted considerable attention since its discovery for its catalysis of water splitting to hydrogen and oxygen under visible light irradiation. However, pristine g-C3N4 confers only low photocatalytic efficiency and requires surface cocatalysts to reach moderate activity due to a lack of accessible surface active sites. Inspired by the high specific surface area and superior electron transfer of graphene, we developed a strongly coupled binary structure of graphene and g-C3N4 aerogel with 3D porous skeleton. The as-prepared 3D structure photocatalysts achieve a high surface area that favors efficient photogenerated charge separation and transfer, enhances the light-harvesting efficiency, and significantly improves the photocatalytic hydrogen evolution rate as well. The photocatalyst performance is observed to be optimized at the ratio 3:7 (g-C3N4:GO), leading to photocatalytic H2 evolution of 16125.1 mmol. g-1. h-1 under visible light irradiation, more than 161 times higher than the rate achieved by bulk g-C3N4.