• Title/Summary/Keyword: Active steering control

Search Result 92, Processing Time 0.021 seconds

A Study on Improving Driving Stability System by Yaw Moment Control (요우모멘트를 통한 주행안정성 향상 제어 알고리즘에 관한 연구)

  • Park Jung-hyen;Kim Soon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.392-397
    • /
    • 2006
  • This paper proposed yaw moment control scheme using braking and active rear wheel steering for improving driving stability especially in high speed driving. Its characteristics the unified chassis control system of two equipment that 4WS(4 Wheel Steering) and ESP(Electronic Stability Program). in this study the performance of the vehicle was compared each equipment. And conventional ABS and TCS can only possible to control the longitudinal movement of braking equipment and drive which can only available to control of longitudinal direction. There after new braking system ESP was developed, which controls both of longitudinal and lateral, with adding of the function of controlling Active Yaw Moment. On this paper, we show about not only designing of improved braking and steering system through establishing of the integrated control system design of 4WS and ESP but also designing of the system contribute to precautious for advanced vehicle stability problem.

Leading Vehicle State Estimator for Adaptive Cruise Control and Vehicle Tracking

  • Lee, Choon-Young;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.181-184
    • /
    • 1999
  • Leading vehicle states are useful and essential elements in adaptive cruise control (ACC) system, collision warning (CW) and collision avoidance (CA) system, and automated highway system (AHS). There are many approaches in ACC using Kalman filter. Mostly only distance to leading vehicle and velocity difference are estimated and used for the above systems. Applications in road vehicle in curved road need to obtain more informations such as yaw angle, steering angle which can be estimated using vision system. Since vision system is not robust to environment change, we used Kalman filter to estimate distance, velocity, yaw angle, and steering angle. Application to active tracking of target vehicle is shown.

  • PDF

Design of an Omni-directional mobile Robot with 3 Caster Wheels

  • Kim, Wheekuk;Kim, Do-Hyung;Yi, Byung-Ju;Yang, Sung-Il;You, Bum-Jae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.210-216
    • /
    • 2001
  • In this paper, design of a 3-degree-of-freedom mobile robot with three caster wheels is performed. Initially, kinematic modeling and singularity analysis of the mobile robot is performed. It is found that the singularity can be avoided when the robot has more than two wheels on which two active joints are located. Optimal kinematic parameters of mobile robots with three active joint variables and with four active joint variables are obtained and compared with respect to kinematic isotropic index of the Jacobian matrix of the mobile robot which is functions of the wheel radius and the length of steering link.

  • PDF

Development of the Semi-Active Controlled Variable Damper System for Passenger Vehicles (승용차용 반능동형 가변댐퍼 시스템의 개발)

  • 허승진;심정수;황성호
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.683-689
    • /
    • 1998
  • A control algorithm for multi-stage dampers is developed based on the mode skyhook control concept, and implemented on the full vehicle system environment. The test vehicle system is equipped with the real time controller, four-stage variable dampers and sensors. The real time controller is developed using a digital signal processor(DSP), digital I/O, A/D and D/A converters. The dampers are driven by the electromagnetic actuators of less than 20 msec response time. The sensors include accelerometers, relative displacement transducers, and steering wheel rate sensors, etc. Through a series of tests in laboratory and proving ground, the performance of the semi-active suspension system is evaluated and it is shown that the vehicle dynamic characteristics is improved with the developed damping system. Futhermore, the parameter tuning methods to enhance vehicle dynamic performance are propsoed.

  • PDF

Active Cancellation of PMSM Torque Ripple Caused by Magnetic Saturation for EPS Applications

  • Lee, Geun-Ho
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.176-180
    • /
    • 2010
  • This paper deals with a control method to reduce the torque ripple of a permanent magnet synchronous motor (PMSM) for electric power steering (EPS) systems. Such an application requires a very low torque ripple in order to maintain a good steering feel. However, because of spatial limitations, it cannot help having a partial saturation in the iron core of the PMSM for an EPS system, and this saturation results in a significant torque ripple. Thus, this paper analyzes the torque ripple caused by the magnetic saturation of a PMSM and proposes a method with respect to inductance measurement to verify the partial saturation. In addition, it is shown that a compensation current is needed in order to minimize the torque ripple when a PMSM is driven in the high torque region. The estimation process of the current and the torque ripple decreased by the current are presented and verified with test results.

A Study on the Performance Analysis of RSC (Roll Stability Control) for Driving Stability of Vehicles (차량 롤 주행안정성 향상을 위한 RSC (Roll Stability Control) 성능 해석에 관한 연구)

  • Kwon, Seong-Jin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.257-263
    • /
    • 2022
  • Active stabilizers use signals such as steering angle, yaw rate, and lateral acceleration to vary the roll stiffness of the front and rear suspension depending on the vehicle's driving conditions, and are attracting attention as RSC (Roll Stability Control) system that suppresses roll when turning and improves ride comfort when going straight. Various studies have been conducted in relation to active stabilizer bars and RSC systems. However, accurate modeling of passive stabilizer model and active stabilizer model and vehicle dynamics analysis result verification are insufficient, and performance result analysis related to vehicle roll angle estimation and electric motor control is insufficient. Therefore, in this study, an accurate vehicle dynamics model was constructed by measuring the passive/active stabilizer bar model and component parameters. Based on this, the analysis result with high reliability was derived by comparing the roll angle estimation algorithm based on the lateral acceleration and suspension of the vehicle with the actual vehicle driving test result. In addition, it was intended to accurately analyze the motor torque characteristics and roll reduction effects of the electric motor-driven RSC system.

A Study on Braking and Driving Force Distribute Control for Active Traction Control System (능동 휠 토크 제어시스템 설계를 위한 제동력${\cdot}$구동력 배분제어에 관한연구)

  • Park Jung-hyen;Kim Soon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1402-1406
    • /
    • 2005
  • A study on the vehicle stability is discussed. In the field of the studies the electronic control systems help overcoming the limit of improvement in vehicle performance with the methods above. Driving stability is mainly incorporated with the later motion of a vehicle generated by the driver's steering input. Recently VDC system has been studieed in order to improve the active stability. This VDC system uses the active braking force. This paper propose the ATC that uses driving force. This paper compared VDC with ATC through an experiment.

A Study on Intelligent Active Roll Angle Controller Design Analysis and Modeling Algorithm

  • Park, Jung-Hyen
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.2
    • /
    • pp.146-150
    • /
    • 2009
  • An Intelligent active roll angle controller design algorithm is discussed. The detailed mathematical formulation and analysis are discussed, and then modeling and design method for active roll angle controller are presented. This paper proposes a design method based upon intelligent robust controller design algorithm to control actively roll angle for improving cornering performance problems. The intelligent robust controller is designed for steady speed driving vehicle system model with representation of steering angle and yaw angular velocity parameters for cornering stability. And the detailed formulation and analysis for the objective vehicle system are investigated.

  • PDF

A Study on the New Active Tilt Control Systems for Improving Passenger′s Feeling of Ground Vehicles in Urban Area (도시형 지상 차량의 승차감 향상을 위한 새로운 능동형 기울임 제어 시스템에 관한 연구)

  • 소상균;변기식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.103-110
    • /
    • 2001
  • To reduce the traffic congestion and parking problems in urban areas tall and narrow vehicles have interested as a means to increase the utilization of existing freeways and parking facilities. The stability problem for those narrow vehicles which might be caused can be reduced by tilting the body toward the inside of the turn. The Direct Tilt Control(DTC) system and the Steering Tilt Control(STC) system have been proposed for those narrow vehicles. In this paper, as one of the performance improvement for that kind of vehicle a new control system to use the merits of both the DTC system and the STC system is proposed. Because two different control systems fight each other, the switching control scheme is applied as a means to prevent fighting. Also, the method in order to achieve the smoothly changed control system when the system is switched from the DTC to the STC or from the STC to the DTC, the appropriate type of control gain is designed.

  • PDF

Adaptive Variable Weights Tuning in an Integrated Chassis Control for Lateral Stability Enhancement (횡방향 안정성 향상을 위한 통합 섀시 제어의 적응 가변 가중치 조절)

  • Yim, Seongjin;Kim, Wooil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.103-111
    • /
    • 2016
  • This paper presents an adaptive variable weights tuning system for an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) for lateral stability enhancement. After calculating the control yaw moment needed to stabilize a vehicle with a controller design method, it is distributed into the tire forces generated by ESC and AFS using weighted pseudo-inverse-based control allocation (WPCA). On a low friction road, lateral stability can deteriorate due to high vehicle speed. To cope with the problem, adaptive tuning rules on variable weights of the WPCA are proposed. To check the effectiveness of the proposed method, a simulation was performed on the vehicle simulation package, CarSim.