• Title/Summary/Keyword: Active steering control

Search Result 92, Processing Time 0.025 seconds

Implementation of Roll Control System for Passenger Car (승용차의 차량 롤 제어를 위한 시스템 구현)

  • 장주섭;이상호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.20-26
    • /
    • 1997
  • A System for reducing vehicle body roll by active control is developed. The stabilizer bar with hydraulic rotary actuator produces anti-roll moment which suppresses roll tendency. This reduction of roll improves the driving safety as well as the ride comfort. Vehicle test data shows considerable reduction of roll angle during steady-state turning. Also improvement of ride comfort is achieved by making the actuator freely rotatable, i.e. by connecting all chambers of actuator in normal driving conditions. A control algorithm using steering wheel angle and vehicle speed signal as input valve is applied. It is compared with signal of the G-sensor.

  • PDF

Optimum Yaw Moment Distribution with ESC and AFS Under Lateral Force Constraint on AFS (AFS 횡력 제한조건 하에서 ESC와 AFS를 이용한 최적 요 모멘트 분배)

  • Yim, Seongjin;Lee, Jungjae;Cho, Sung Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.527-534
    • /
    • 2015
  • This paper presents an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) under lateral force constraint on AFS. The control yaw moment is calculated using a sliding mode control. The tire forces generated by ESC and AFS are determined using weighted pseudo-inverse based control allocation (WPCA) in order to generate the control yaw moment. On a low friction road, AFS is not effective when the lateral tire forces of front wheels are easily saturated. To solve problem, the lateral force of AFS is limited to its maximum and the braking of ESC is applied with WPCA. To evaluate the effectiveness of the proposed method, a simulation was performed on the vehicle simulation package, $CarSim^{(R)}$. From the simulation, it was verified that the proposed method could enhance the maneuverability and lateral stability if the lateral force of AFS exceeds its maximum.

Design of active beam steering antenna mounted on LEO small satellite (저궤도 소형위성 탑재용 빔 조향 능동 다이폴 안테나 설계)

  • Jeong, Jae-Yeop;Park, Jong-Hwan;Woo, Jong-Myung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.197-203
    • /
    • 2016
  • In this paper, the dipole antenna that can control a beam steering were designed for attaching on LEO(Low Earth Orbit) small satellite. The proposed antenna was based on Yagi-Uda antenna. The parasitic element was proposed as a T-shape. Depending on the state of open or short at the end of a vertical element, we can choose a characteristic of the parasitic element with fixing a vertical element length of the parasitic element. Using this characteristic, we designed the director element and reflector element. The proposed antenna was designed to receive UHF 436.5 MHz. Antenna gain was chosen by link budget between one satellite and the other satellite or between the satellite and the ground station. By changing a vertical element length which is the largest variable that chooses an antenna characteristic, we confirmed that ${\lambda}/2$ length transformer has a result that improve 0.5 dB in comparison ${\lambda}/4$ length transformer from maximum gain direction. In production, we made an on/off switch composed of a diode, capacitor, and inductor control an open and short at the end of the parasitic element. As a result, the gain of antenna used in a link between one satellite and the other satellite had average 5.92 dBi. And the gain of antenna used in a link between the satellite and the ground station had average 0.99 dBi.

DEVELOPMENT OF VEHICLE DYNAMICS MODEL FOR REAL-TIME ELECTRONIC CONTROL UNIT EVALUATION SYSTEM USING KINEMATIC AND COMPLIANCE TEST DATA

  • KIM S. S.;JUNG H. K.;SHIM J. S.;KIM C. W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.599-604
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension, that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of test and simulation results demonstrates the validity of the proposed functional suspension modeling method. The model is computationally very efficient to achieve real-time simulation on TMS 320C6711 150 MHz DSP board of HILS (hardware-in-the-loop simulation) system for ECU (electronic control unit) evaluation of semi-active suspension.

The Design of Electronically Beam Steeling Array Antenna Using 4 Parasitic Elements (4개의 기생 소자를 이용한 전자적인 빔 조향 배열 안테나 설계)

  • Kim, Young-Goo;Choi, Ik-Guen;Kim, Tae-Hong;You, Jong-Jun;Kang, Sang-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.167-173
    • /
    • 2009
  • This paper proposes an electronically beam steering array antenna, consisting of single fed active element and 4 parasitic elements, operating in 5.8 GHz ISM band. Beam steering can be achieved by controlling the reactance of the variable reactance control circuit connected to the load of the parasitic elements without using the high cost phase shifters. The proposed antenna realizes ${\pm}30^{\circ}$ beam scanning of E-plane and H-plane with the below -10 dB return loss in ISM band. The gain of the $6.18{\sim}7.53\;dBi$ in E-plane and $7.022{\sim}7.779\;dBi$ in H-plane is shown in the scanning range.

A Study on Improving Driving Stability System in Slalom and Emergency Case (급선회반복 및 위급상황에서의 주행안정성 시스템에 관한 연구)

  • Park Jung-hyen;Kim Soon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1716-1721
    • /
    • 2005
  • Conventionally, 2WS is used for vehicle sleeting, which can only steering front wheel. In case of trying to high speed slalom or emergency through this kind of vehicle equipped 2WS, it may occur much of side slip angle. On the other hand, 4WS makes decreasing of side slip angle, outstandingly, so it is possible to support vehicle movement stable. And conventional ABS and TCS can only possible control the longitudinal movement of braking equipment and drive which can only availab to control of longitudinal direction. There after new braking system ESP was developed, which controls both of longitudinal and lateral, with adding of the function of controlling Active Yaw Moment. On this paper, we show about not only designing of improed braking and steering system through establishing of the integrated control system design of 4WS and ESP but also designing of the system contribute to precautious for advanced vehicle stability problem.

Lateral Stability Control of Electric Vehicle Based On Disturbance Accommodating Kalman Filter using the Integration of Single Antenna GPS Receiver and Yaw Rate Sensor

  • Nguyen, Binh-Minh;Wang, Yafei;Fujimoto, Hiroshi;Hori, Yoichi
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.899-910
    • /
    • 2013
  • This paper presents a novel lateral stability control system for electric vehicle based on sideslip angle estimation through Kalman filter using the integration of a single antenna GPS receiver and yaw rate sensor. Using multi-rate measurements including yaw rate and course angle, time-varying parameters disappear from the measurement equation of the proposed Kalman filter. Accurate sideslip angle estimation is achieved by treating the combination of model uncertainties and external disturbances as extended states. Active front steering and direct yaw moment are integrated to manipulate sideslip angle and yaw rate of the vehicle. Instead of decoupling control design method, a new control scheme, "two-input two-output controller", is proposed. The extended states are utilized for disturbance rejection that improves the robustness of lateral stability control system. The effectiveness of the proposed methods is verified by computer simulations and experiments.

Development of HILS System for Performance Analysis of the ABS ECU for Commercial Vehicles (상용차용 ABS ECU의 성능분석을 위한 HILS 시스템 개발)

  • 황돈하;이기창;전정우;김용주;조정목;조중선
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.898-906
    • /
    • 2002
  • Antilock Brake System (ABS) is designed to prevent wheels from being locked-up under emergency braking of a vehicle. Therefore it improves directional stability of the vehicle, shortens stopping distance, and enhances maneuvering during braking, regardless of road conditions. Hardware In-the-Loop Simulation (HILS) is an effective tool for design Performance evaluation and test of vehicle subsystems such as ABS, active suspension, and steering systems. This paper describes a HILS model for ABS/ ASR(Acceleration Slip Regulation) system applications. A fourteen degrees-of-freedom vehicle dynamics model is simulated in an alpha-chip processor board. The proposed HILS system is tested with a basic ABS control algorithm. The design and implementation of HILS system for the ABS ECU(Electronic Control Unit) development of commercial vehicle are presented. The results show that the proposed HILS system can be used to test the performance, stability, and reliability of a vehicle under braking.

Design and Analysis of an Interactive Motion Simulator in Space Entertainment System

  • Hsu, Kuei-Shu;Cho, Wei-Ting;Lai, Chin-Feng;Wang, Xiaofei;Huang, Yueh-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.446-467
    • /
    • 2012
  • In this paper, the analysis and design of a motion simulator (based on the approach taken by interactive virtual reality (VR) entertainment systems) is conducted. The main components of the system include a bilateral control interface, simulation and a motion simulator control scheme. The space entertainment system uses a virtual environment that enables operators to feel the actual feedback sensing and distorted motion from the virtual environment, just as they would in the real environment. The space entertainment system integrates the dynamics of the motion simulator and the virtual environment and the operator maneuvers a steering wheel to interact with the system. The multiple bilateral control schemes employ a dynamical controller, which is designed by considering the velocity and acceleration that the operator imposes on the joystick, the environmental changes imposed on the motion simulator. In addition, we develop a calculated method to evaluate the Ratio of the simulation results. It is shown that the proposed control scheme can improve the performance of the visual entertainment system. Experiments are conducted on the virtual reality entertainment system to validate the theoretical developments.

Robust Gaze-Fixing of an Active Vision System under Variation of System Parameters (시스템 파라미터의 변동 하에서도 강건한 능동적인 비전의 시선 고정)

  • Han, Youngmo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.3
    • /
    • pp.195-200
    • /
    • 2012
  • To steer a camera is done based on system parameters of the vision system. However, the system parameters when they are used might be different from those when they were measured. As one method to compensate for this problem, this research proposes a gaze-steering method based on LMI(Linear Matrix Inequality) that is robust to variations in the system parameters of the vision system. Simulation results show that the proposed method produces less gaze-tracking error than a contemporary linear method and more stable gaze-tracking error than a contemporary nonlinear method. Moreover, the proposed method is fast enough for realtime processing.