• 제목/요약/키워드: Active snubber

검색결과 95건 처리시간 0.027초

엑티브 스너버를 이용한 Ringing 제거 및 효율 개선 (Active snubber eliminates ringings and improves efficiency)

  • 권혁진;최승원;이일운;이준영
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.276-277
    • /
    • 2020
  • 본 논문은 Full-bridge converter 2차측 다이오드의 Ringing 전압을 제거하는 방법으로 Active Snubber를 제안한다. 기존 RCD Snubber는 다이오드의 Ringing 에너지를 저항으로 소모하는 방식으로 전압 서지를 줄이는데 한계가 있다. 이러한 문제를 해결하기 위해 Active Snubber가 제안 되었으며, Active Snubber는 다이오드의 Ringing 전압을 회생시킴으로써, 전압스트레스를 줄이고 효율을 개선하는 이점을 보여준다. 본 논문에서는 7KW Full-bridge converter에 제안하는 Active Snubber를 적용하여 그 유도성을 입증하였다.

  • PDF

A New Controllable Active Clamp Algorithm for Switching Loss Reduction in a Module Integrated Converter System

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권4호
    • /
    • pp.465-471
    • /
    • 2014
  • This paper proposes a new switching algorithm for an active clamp snubber to improve the efficiency of a module integrated converter system. This system uses an active clamp method for the snubber circuit for the efficiency and reliability of the system. However, the active clamp snubber circuit has the disadvantage that system efficiency is decreased by switch operating time because of heat loss in resonance between the snubber capacitor and leakage inductance. To address this, this paper proposes a new switching algorithm. The proposed algorithm is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time. Also, the snubber switch is operated at zero voltage switching by turning on the snubber switch before main switch turn-off. Simulation and experimental results are presented to show the validity of the proposed new active clamp control algorithm.

태양광 MIC 시스템의 효율향상을 위한 새로운 Active Clamp 스위칭 기법 (A Novel Active Clamp Switching Method To Improve of Efficiency For Photovoltaic MIC)

  • 박병철;박지호;송성근;박성준;신중린
    • 전력전자학회논문지
    • /
    • 제18권5호
    • /
    • pp.477-484
    • /
    • 2013
  • This paper proposes a novel switching method of active clamp snubber for efficiency improvement of PV module integrated converter(MIC) system. Recently, MIC solar system is researched about the efficiency and safety. PV MIC system is used active clamp method of snubber circuit for the price and reliability of the system. But active clamp snubber circuit has the disadvantage that system efficiency is decreased for switch operating time because of heat loss of resonant between snubber capacitor and leakage inductance. To solve this problem, this paper proposes a novel switching method of the active clamp. The proposed method is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time and through simulations and experiments proved the validity.

보조 권선형 능동 스너버를 적용하여 낮은 스위치 서지 전압 특성을 갖는 유사 공진형 컨버터에 관한 연구 (A Study on Quasi Resonant Converter with Low Switching Surge Voltage Characteristics by Applying Auxiliary Winding Type Active Snubber)

  • 안태영
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.56-61
    • /
    • 2018
  • In this paper, a new type of active snubber was proposed to lower the excessive rated voltage of the clamp capacitor which was a problem in the conventional circuit by applying auxiliary winding into the active snubber. A simplified equivalent circuit of the proposed snubber was derived by applying it to QR flyback converter, and the equivalent circuits for each switch state was shown under the steady-state condition. In addition, the maximum voltage of the clamp capacitor as well as the main switch was found by using the steady-state equations. In particular, it was found that the clamp capacitor voltage could be controlled by the auxiliary winding ratio. In order to verify the utility and practicality of the proposed converter with auxiliary winding type active snubber circuit, a prototype with an output voltage of 19V and a maximum load current of 6A was produced and the results were reported.

새로운 액티브 스너버 셀을 적용한 ZVT PWM DC-DC 컨버터 (Zero-Voltage-Transition PWM DC-DC Converter Using A New Active-Snubber-Cell)

  • 하이 뜨란;아디스티라;김선주;최세완
    • 전력전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.273-280
    • /
    • 2018
  • This paper proposes a zero-voltage-transition pulse-width modulation (PWM) DC-DC converter that uses a new active-snubber-cell. The converter main switch can be turned on and off with ZVS, while the snubber switch is turned on with ZCS and turned off with ZVS. Other semiconductor devices are operated under the soft-switching condition. Normal PWM control can be used, the proposed active-snubber-cell does not impose any additional voltage and current stresses. The active-snubber-cell is suitable for high-power applications due to its easy integration into interleaved converters. This paper discusses the operation of the converter, presents some design guidelines, and provides the results of an experiment with a 100 kHz and 1 kW prototype. A peak efficiency of 97.8% is recorded.

개선된 영전압 스위칭 액티브 클램프 포워드 컨버터 (An Improved ZVS Active Clamp Forward Converter)

  • 최선호;이현관;김은수
    • 전력전자학회논문지
    • /
    • 제10권3호
    • /
    • pp.302-311
    • /
    • 2005
  • 본 논문에서는 액티브 클램프 포워드컨버터 2차 측에 탭-인덕터와 스너버 커페시터, 두 개의 다이오드로 구성된 무손실 스너버를 적용한 개선된 액티브클램프 포워드컨버터를 제안하였고, 종래의 컨버터와 비교하여 제안된 컨버터가 보다 적은 자화전류조건에서도 영전압 스위칭(ZVS)이 가능함을 보였다. 제안된 컨버터의 동작원리 및 모드를 분석하였고, 300W출력용량의 컨버터 시제품을 제작 실험하여 제안된 컨버터의 효율특성이 개선됨을 보였다.

액티브 공진 스너버를 이용한 새로운 ZVT-PWM 컨버터 (A New ZVT-PWM Converter using Active Resonant Snubber)

  • 박진민;윤영태;김칠용;김대웅;박성우;문상필;서기영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.262-265
    • /
    • 2003
  • In this paper, a new active snubber circuit that overcomes most of the drawbacks of the normal "zero voltage transition pulse width modulation" (ZVT-PWM) converter is proposed to contrive a new family of ZVT- PWM converter. A converter with the proposed snubber circuit can also operate at light load conditions. A design procedure of the proposed active snubber circuit is also presented. Additionally, at full output power in the proposed soft switching converter, the main switch loss is about 27[%] and the total circuit loss is about 36[%] of that in its counterpart hard switching converter, and so the overall efficiency, which is about 91[%] in the hard switching case, increases to about 97[%].

  • PDF

Two-Switch Auxiliary Resonant DC Link Snubber-Assisted Three-Phase Soft Switching PWM Sinewave Power Conversion System with Minimized Commutation Power Losses

  • Nagai, Shinichiro;Sato, Shinji;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제3권4호
    • /
    • pp.249-258
    • /
    • 2003
  • This paper presents a high-efficient and cost effective three-phase AC/DC-DC/AC power conversion system with a single two-switch type active Auxiliary Resonant DC Link (ARDCL) snubber circuit, which can minimize the total power dissipation. The active ARDCL snubber circuit is proposed in this paper and its unique features are described. Its operation principle in steady-state is discussed for the three phase AC/DC-DC/AC converter, which is composed of PWM rectifier as power factor correction (PFC) converter, sinewave PWM inverter. In the presented power converter system not only three-phase AC/DC PWM rectifier but also three-phase DC/AC inverter can achieve the stable ZVS commutation for all the power semiconductor devices. It is proved that the proposed three-phase AC/DC-DC/AC converter system is more effective and acceptable than the previous from the cost viewpoint and high efficient consideration. In addition, the proposed two-switch type active auxiliary ARDCL snubber circuit can reduce the peak value of the resonant inductor injection current in order to maximize total system actual efficiency by using the improved DSP based control scheme. Moreover the proposed active auxiliary two-switch ARDCL snubber circuit has the merit so that there is no need to use any sensing devices to detect the voltage and current in the ARDCL sunbber circuit for realizing soft-switching operation. This three-phase AC/DC-DC/AC converter system developed for UPS can achieve the 1.8% higher efficiency and 20dB lower conduction noise than those of the conventional three-phase hard-switching PWM AC/DC-DC/AC converter system. It is proved that actual efficiency of the proposed three-phase AC/DC-DC/AC converter system operating under a condition of soft switching is 88.7% under 10kw output power.

인터리브드 플라이 백 컨버터의 스위칭 손실 감소를 위한 제어형 스너버에 관한 연구 (A Study on the Controllable Snubber for Switching Loss Reduction in Interleaved Fly-Back Converter)

  • 박창석;정태욱
    • 조명전기설비학회논문지
    • /
    • 제29권5호
    • /
    • pp.57-64
    • /
    • 2015
  • This paper proposes a new switching algorithm for an controllable clamp snubber to improve the efficiency of a fly-back converter system. This system uses an controllable clamp method for the snubber circuit for the efficiency and reliability of the system. However, the active clamp snubber circuit has the disadvantage that system efficiency is decreased by switch operating time because of heat loss in resonance between the snubber capacitor and leakage inductance. To address this, this paper proposes a new switching algorithm. The proposed algorithm is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time. Also, the snubber switch is operated at zero voltage switching by turning on the snubber switch before main switch turn-off. Experimental results are presented to show the validity of the proposed controllable clamp control algorithm.

An Active Auxiliary Quasi-Resonant Commutation Block Snubber-Assisted Three Phase Voltage Source Soft Switching PFC Rectifier using IGBTs

  • Hiraki Eiji;Nakaoka Mutsuo;Sugimoto Shigeyuki;Ogawa Shigeaki
    • Journal of Power Electronics
    • /
    • 제5권1호
    • /
    • pp.29-35
    • /
    • 2005
  • This paper presents a novel prototype of an active auxiliary quasi-resonant snubber(Auxiliary Quasi-Resonant Commutation Block-Link; ARCB)-assisted three phase voltage source soft switching space voltage vector modulated PFC rectifier, which uses Zero Voltage Soft Switching (ZVS) commutation. The operating principles of this digitally-controlled three phase soft switching PWM-PFC rectifier system with an instantaneous power feedback scheme are illustrated and its steady-state performance is evaluated using computer-aided simulation analysis.