• Title/Summary/Keyword: Active sensing

Search Result 400, Processing Time 0.021 seconds

Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

  • Park, Seung-Hee;Yun, Chung-Bang;Inman, Daniel J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.217-223
    • /
    • 2007
  • This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure.

Three-Phase Common-Mode Active EMI Filters for Induction Motor Drive Applications

  • Tarateeraseth, Vuttipon
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.871-878
    • /
    • 2018
  • In this paper, the conducted EMI reduction performances of active feed-forward current-sensing current-actuation (CSCA) and voltage-sensing current-actuation (VSCA) filters for a three-phase induction motor drive system are evaluated by experiments. For comparison purposes, the conducted EMI (CM emission, DM emission and total emission) of a three-phase induction motor drive with a conventional CM choke, a conventional CM choke in series with an active VSCA filter, and an active CSCA filter (where the CM choke was modified and used as a sensing current transformer) were compared to the case of a system without any filter inserted. Experimental results show that the active CSCA and VSCA filters can improve the CM reduction performance of the conventional CM choke by about 5 dB especially at low-frequencies. However, for DM comparisons, it shows that there is no different between cases with and without filters inserted.

A Review on Remote Sensing Techniques and Case Studies for Active Fault Investigation (활성단층 조사에 활용되는 원격탐사 기술과 사례의 고찰)

  • Gwon, Ohsang;Son, Hyorok;Bae, Sangyeol;Park, Kiwoong;Choi, Ho-Seok;Kim, Young-Seog;Lee, Seoung-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1901-1922
    • /
    • 2021
  • Since most large earthquakes occur by reactivation of preexisting active faults, it is important to understand the locations and characteristics of active faults in terms of earthquake hazard research and earthquake disaster prevention. Recently, several remote sensing techniques are broadly used for lineament analysis performed prior to field surveys in active fault surveys. The aim of this paper is introducing simple principles and application examples of each remote sensing technique (satellite remote sensing, airborne remote sensing, InSAR, LiDAR) widely used for active fault investigation. This paper also explains the analytical methods for the slope break generated by fault activity based on GIS and the horizontal displacement of the strike-slip fault. In discussion, we would like to discuss the problems and solutions on making DEM based on aerial photography, and a new developed technique (RRIM) to overcome the problems of DEM based on aerial LiDAR. Understanding remote sensing techniques used for active fault investigation and utilizing appropriate methods depending on the situation and limitations of each remote sensing technique are important for effective active fault investigation.

Development of a Lane Departure Avoidance System using Vision Sensor and Active Steering Control (비전 센서 및 능동 조향 제어를 이용한 차선 이탈 방지 시스템 개발)

  • 허건수;박범찬;홍대건
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.222-228
    • /
    • 2003
  • Lane departure avoidance system is one of the key technologies for the future active-safety passenger cars. The lane departure avoidance system is composed of two subsystems; lane sensing algorithm and active-steering controller. In this paper, the road image is obtained by vision sensor and the lane parameters are estimated using image processing and Kalman Filter technique. The active-steering controller is designed to prevent the lane departure. The developed active-steering controller can be realized by steer-by-wire actuator. The lane-sensing algorithm and active-steering controller are implemented into the steering HILS(Hardware-In-the-Loop Simulation) and their performance is evaluated with a human driver in the loop.

Developing an integrated software solution for active-sensing SHM

  • Overly, T.G.;Jacobs, L.D.;Farinholt, K.M.;Park, G.;Farrar, C.R.;Flynn, E.B.;Todd, M.D.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.457-468
    • /
    • 2009
  • A novel approach for integrating active sensing data interrogation algorithms for structural health monitoring (SHM) applications is presented. These algorithms cover Lamb wave propagation, impedance methods, and sensor diagnostics. Contrary to most active-sensing SHM techniques, which utilize only a single signal processing method for damage identification, a suite of signal processing algorithms are employed and grouped into one package to improve the damage detection capability. A MATLAB-based user interface, referred to as HOPS, was created, which allows the analyst to configure the data acquisition system and display the results from each damage identification algorithm for side-by-side comparison. By grouping a suite of algorithms into one package, this study contributes to and enhances the visibility and interpretation of the active-sensing methods related to damage identification. This paper will discuss the detailed descriptions of the damage identification techniques employed in this software and outline future issues to realize the full potential of this software.

Concrete structural health monitoring using piezoceramic-based wireless sensor networks

  • Li, Peng;Gu, Haichang;Song, Gangbing;Zheng, Rong;Mo, Y.L.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.731-748
    • /
    • 2010
  • Impact detection and health monitoring are very important tasks for civil infrastructures, such as bridges. Piezoceramic based transducers are widely researched for these tasks due to the piezoceramic material's inherent advantages of dual sensing and actuation ability, which enables the active sensing method for structural health monitoring with a network of piezoceramic transducers. Wireless sensor networks, which are easy for deployment, have great potential in health monitoring systems for large civil infrastructures to identify early-age damages. However, most commercial wireless sensor networks are general purpose and may not be optimized for a network of piezoceramic based transducers. Wireless networks of piezoceramic transducers for active sensing have special requirements, such as relatively high sampling rate (at a few-thousand Hz), incorporation of an amplifier for the piezoceramic element for actuation, and low energy consumption for actuation. In this paper, a wireless network is specially designed for piezoceramic transducers to implement impact detection and active sensing for structural health monitoring. A power efficient embedded system is designed to form the wireless sensor network that is capable of high sampling rate. A 32 bit RISC wireless microcontroller is chosen as the main processor. Detailed design of the hardware system and software system of the wireless sensor network is presented in this paper. To verify the functionality of the wireless sensor network, it is deployed on a two-story concrete frame with embedded piezoceramic transducers, and the active sensing property of piezoceramic material is used to detect the damage in the structure. Experimental results show that the wireless sensor network can effectively implement active sensing and impact detection with high sampling rate while maintaining low power consumption by performing offline data processing and minimizing wireless communication.

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.

Design of an Active Tunable Bandpass Filter for Spectrum Sensing Application in the TVWS Band

  • Kim, Dong-Su;Kim, Do-Hyun;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.34-38
    • /
    • 2017
  • In this paper, we propose an active tunable bandpass filter (BPF) for efficient spectrum sensing in the TV White Space (TVWS) band. By designing a narrow bandwidth, it is possible to improve the sensing probability. The basic circuit configuration involves switching the PIN diode compromising capacitor bank to change the capacitance of the LC resonant circuit. To cover the whole TVWS band effectively, we add a varactor diode, and the bandwidth is set to 25-MHz. We improve the insertion loss by using the active capacitance circuit. The tunable BPF in the TVWS band with a 20-MHz interval is designed to have 11 channels with a bandwidth of 25 MHz and a low insertion loss of 1.7-2.0 dB.

Estimation Method for Kinematic Constraint of Unknown Object by Active Sensing (미지 물체의 구속상태에 관한 실시간 추정방법)

  • Hwang Chang-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.188-200
    • /
    • 2005
  • Control of a multi-fingered robotic hand is usually based on the theoretical analysis for kinematics and dynamics of fingers and of object. However, the implementation of such analyses to robotic hands is difficult because of errors and uncertainties in the real situations. This article presents the control method for estimating the kinematic constraint of an unknown object by active sensing. The experimental system has a two-fingered robotic hand suspended vertically for manipulation in the vertical plane. The fingers with three degrees-of-freedom are driven by wires directly connected to voice-coil motors without reduction gears. The fingers are equipped with three-axis force sensors and with dynamic tactile sensors that detect slippage between the fingertip surfaces and the object. In order to make an accurate estimation for the kinematic constraint of the unknown object, i.e. the constraint direction and the constraint center, four kinds of the active sensing and feedback control algorithm were developed: two position-based algorithms and two force-based algorithms. Furthermore, the compound and effective algorithm was also developed by combining two algorithms. Force sensors are mainly used to adapt errors and uncertainties encountered during the constraint estimation. Several experimental results involving the motion of lifting a finger off an unknown object are presented.

A Near Range Sensing Device Using Active Laser Diodes (능동레이저 근거리 감지센서)

  • Kim, Ung-Sik;Kang, Byoung-Moo;Kim, Wan-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2336-2338
    • /
    • 1998
  • This paper describes an active laser sensing device using laser diodes and optic devices. It is able to detect near targets existed in $360^{\circ}$ directions simultaneously with effectiveness and reliability. This sensing device consists of four laser transmitters and four receivers. Only four transmitter/receiver channels of this near range sensing device are capable of $360^{\circ}$ coverage. The usefulness of this sensing device is confirmed through some experiments for the mock-up targets.

  • PDF