• Title/Summary/Keyword: Active queue management

Search Result 63, Processing Time 0.025 seconds

(A New Queue Management Algorithm Improving Fairness of the Internet Congestion Control) (인터넷 혼잡제어에서 공정성 향상을 위한 새로운 큐 관리 알고리즘)

  • 구자헌;최웅철;정광수
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.437-447
    • /
    • 2003
  • In order to reduce the increasing packet loss rates caused by an exponential increase in network traffic, the IETF(Internet Engineering Task Force) is considering the deployment of active queue management techniques such as RED(Random Early Detection) algorithm. However, RED algorithm simple but does not protect traffic from high-bandwidth flows, which include not only flows that fail to use end-to-end congestion control such as UDP flow, but also short round-trip time TCP flows. In this paper, in order to solve this problem, we propose a simple fairness queue management scheme, called AFQM(Approximate Fair Queue Management) algorithm, that discriminate against the flows which submit more packets/sec than is allowed by their fair share. By doing this, the scheme aims to approximate the fair queueing policy Since it is a small overhead and easy to implement, AFQM algorithm controls unresponsive or misbehaving flows with a minimum overhead.

Application of a PID Feedback Control Algorithm for Adaptive Queue Management to Support TCP Congestion Control

  • Ryu, Seungwan;Rump, Christopher M.
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.133-146
    • /
    • 2004
  • Recently, many active queue management (AQM) algorithms have been proposed to address the performance degradation. of end-to-end congestion control under tail-drop (TD) queue management at Internet routers. However, these AQM algorithms show performance improvement only for limited network environments, and are insensitive to dynamically changing network situations. In this paper, we propose an adaptive queue management algorithm, called PID-controller, that uses proportional-integral-derivative (PID) feedback control to remedy these weak-Dalles of existing AQM proposals. The PID-controller is able to detect and control congestion adaptively and proactively to dynamically changing network environments using incipient as well as current congestion indications. A simulation study over a wide range of IP traffic conditions shows that PID-controller outperforms other AQM algorithms such as Random Early Detection (RED) [3] and Proportional-Integral (PI) controller [9] in terms of queue length dynamics, packet loss rates, and link utilization.

Modified Random Early Defection Algorithm for the Dynamic Congestion Control in Routers (라우터에서의 동적인 혼잡 제어를 위한 새로운 큐 관리 알고리즘)

  • Koo, Ja-Hon;Song, Byung-Hun;Chung, Kwang-Sue;Oh, Seoung-Jun
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.4
    • /
    • pp.517-526
    • /
    • 2001
  • In order to reduce the increasing packet loss rates caused by an exponential increase in network traffic, the IETF(Internet Engineering Task Force) is considering the deployment of active queue management techniques such as RED(Random Early Detection). While active queue management in routers and gateways can potentially reduce total packet loss rates in the Internet, this paper has demonstrated the inherent weakness of current techniques and shows that they are ineffective in preventing high loss rates. The inherent problem with these queue management algorithms is that they all use queue lengths as the indicator of the severity of congestion. In this paper, in order to solve this problem, a new active queue management algorithm called MRED(Modified Random Early Detection) is proposed. MRED computes the packet drop probability based on our heuristic method rather than the simple method used in RED. Using simulation, MRED is shown to perform better than existing queue management schemes. To analyze the performance, we also measure throughput of traffics under the FIFO control, and compared the performance with that of this MRED system.

  • PDF

PAQM: an Adaptive and Proactive Queue Management for end-to-end TCP Congestion Control

  • Ryu Seung Wan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.417-424
    • /
    • 2003
  • In this paper, we introduce and analyze a feedback control model of TCP/AQM dynamics. Then, we propose the Pro-active Queue Management (PAQM) mechanism, which can provide proactive congestion avoidance and control using an adaptive congestion indicator and a control function for wide range of traffic environments. The PAQM stabilizes the queue length around a desired level while giving smooth and low packet loss rates independent of the traffic load level under a wide range of traffic environment. The PAQM outperforms other AQM algorithms such as Random Early Detection (RED) [1] and PI-controller [2]

  • PDF

Improve ARED Algorithm in TCP/IP Network (TCP/IP 네트워크에서 ARED 알고리즘의 성능 개선)

  • Nam, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.177-183
    • /
    • 2007
  • Active queue management (AQM) refers to a family of packet dropping mechanisms for router queues that has been proposed to support end-to-end congestion control mechanisms in the Internet. The proposed AQM algorithm by the IETF is Random Early Detection (RED). The RED algorithm allows network operators simultaneously to achieve high throughput and low average delay. However. the resulting average queue length is quite sensitive to the level of congestion. In this paper, we propose the Refined Adaptive RED(RARED), as a solution for reducing the sensitivity to parameters that affect RED performance. Based on simulations, we observe that the RARED scheme improves overall performance of the network. In particular, the RARED scheme reduces packet drop rate and improves goodput.

  • PDF

SQUIRREL SEARCH PID CONTROLLER ALGORITHM BASED ACTIVE QUEUE MANAGEMENT TECHNIQUE FOR TCP COMMUNICATION NETWORKS

  • Keerthipati.Kumar;R.A. KARTHIKA
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.123-133
    • /
    • 2023
  • Active queue management (AQM) is a leading congestion control system, which can keep smaller queuing delay, less packet loss with better network utilization and throughput by intentionally dropping the packets at the intermediate hubs in TCP/IP (transmission control protocol/Internet protocol) networks. To accelerate the responsiveness of AQM framework, proportional-integral-differential (PID) controllers are utilized. In spite of its simplicity, it can effectively take care of a range of complex problems; however it is a lot complicated to track down optimal PID parameters with conventional procedures. A few new strategies have been grown as of late to adjust the PID controller parameters. Therefore, in this paper, we have developed a Squirrel search based PID controller to dynamically find its controller gain parameters for AQM. The controller gain parameters are decided based on minimizing the integrated-absolute error (IAE) in order to ensure less packet loss, high link utilization and a stable queue length in favor of TCP networks.

Dynamic Optimization of Active Queue Management Routers to Improve Queue Stability

  • Radwan, Amr
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1375-1382
    • /
    • 2015
  • This paper aims to introduce the numerical methods for solving the optimal control theory to model bufferbloat problem. Mathematical tools are useful to provide insight for system engineers and users to understand better about what we are facing right now while experiment in a large-scale testbed can encourage us to implement in realistic scenario. In this paper, we introduce a survey of the numerical methods for solving the optimal control problem. We propose the dynamic optimization sweeping algorithm for optimal control of the active queue management. Simulation results in network simulator ns2 demonstrate that our proposed algorithm can obtain the stability faster than the others while still maintain a short queue length (≈10 packets) and low delay experience for arriving packets (0.4 seconds).

Adaptive Queue Management in TCP/IP Networks (TCP/IP 네트워크에서 적응적 큐 관리 알고리즘)

  • Kim, Chang Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.2
    • /
    • pp.153-167
    • /
    • 2010
  • Traffic conditions, in particular number of active TCP flows, change dramatically over time. The main goal of this paper is an adaptive queue management algorithm that can maintain network state of high-throughput and low-delay under changing traffic conditions In this paper, we devise Probability Adaptive RED(PARED) that combines the more effective elements of recent algorithms with a RED core. It automatically adjusts its adaptive marking function to account for changes in traffic load and to keep queue length within the desired target queue length. We simulate that PARED algorithm results in under changes in traffic load and mixed traffic load. The simulation test confirm this stability, and indicate that overall performances of PARED are substantially better than the RED and ARED algorithms.

Internet Traffic Control Using Dynamic Neural Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.285-291
    • /
    • 2008
  • Active Queue Management(AQM) has been widely used for congestion avoidance in Transmission Control Protocol(TCP) networks. Although numerous AQM schemes have been proposed to regulate a queue size close to a reference level, most of them are incapable of adequately adapting to TCP network dynamics due to TCP's non-linearity and time-varying stochastic properties. To alleviate these problems, we introduce an AQM technique based on a dynamic neural network using the Back-Propagation(BP) algorithm. The dynamic neural network is designed to perform as a robust adaptive feedback controller for TCP dynamics after an adequate training period. We evaluate the performances of the proposed neural network AQM approach using simulation experiments. The proposed approach yields superior performance with faster transient time, larger throughput, and higher link utilization compared to two existing schemes: Random Early Detection(RED) and Proportional-Integral(PI)-based AQM. The neural AQM outperformed PI control and RED, especially in transient state and TCP dynamics variation.

A Study on a Queue Management Scheme for Alleviating the Impact of Packet Size on the Throughput (패킷 크기에 따른 처리율 영향을 완화하는 큐 관리 기법 연구)

  • 이성근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.4
    • /
    • pp.552-558
    • /
    • 2002
  • Differentiated services (DiffServ) architecture defines a new framework for the support of quality of service (QoS) in IP-based networks. RIO has received the most attention among all the active queue management mechanisms proposed for assured service in DiffServ environment. The paper proposed the enhanced RIO which could alleviate the impact of flow's packet sire on the realized throughput. The simulation results indicate that this mechanism, when combined with TSW as traffic conditioner, provide better throughput assurance and fair distribution of excess bandwidth independent of packet size of flows in case of well-provisioned network environment.