• Title/Summary/Keyword: Active materials

Search Result 2,525, Processing Time 0.032 seconds

A Study on the Plate for Deep Discharge in Lead Acid Battery (납축전지의 심방전용 극판에 관한 연구)

  • Jeong, Soon-Wook;Ku, Bon-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.197-202
    • /
    • 2014
  • Positive plate was composed of lead hydroxide via reaction between lead oxide and $H_2O$ and lead sulfate was formed of the reaction of lead hydroxide with sulfuric acid. And its density is $3.8g/cm^3$, $4.0g/cm^3$, $4.2g/cm^3$ and $4.4g/cm^3$ by controlling volume of refined water. Curing of positive plate is done for low ($45^{\circ}C$, 40hr, over 95% of relative humidity) & high ($80^{\circ}C$, 40hr, over 95% of relative humidity) temperature, which created 3BS & 4BS active materials. Experimental result of DOD with 100% life cycle test shows that it was not related to the density of active materials but to the low & high temperature aging of active materials. The test makes us to understand that the crystallization which is made by curing of active materials is a more of a main factor than density of active materials under the deep cycle using circumstances. The active materials which were from the high temperature curing are better for deep cycle performance.

Evaluation of Humidity Control Ceramic Board Using Gypsum Binder (석고계 바인더를 활용한 습도도절 세라믹 보드의 특성 평가)

  • Lee, Jong-Kyu;Kim, Tae-Yeon
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.62-67
    • /
    • 2018
  • Active clay, bentonite and zeolite were used as porous materials for humidity controlling ceramic boards. The specific area and the pore volume of active clay were higher than bentonite and zeolite. The flexible strength of the gypsum board decreased with an increasing amount of porous material, and the flexible strength was lowest when active clay with a higher specific surface area than others porous materials was added. The specific surface area and total pore volume of ceramic boards containing porous material were highest at $102.25m^2/g$, $0.142cm^3/g$, respectively, when the active clay was added. In addition, as the amount of added porous materials increased, the specific surface area and total pore volume of the ceramic board increased, but the average pore diameter decreased. The addition of s porous materials with a high specific area and a large pore volume improved the moisture absorptive and desorptive performance of the ceramic board. Therefore, in this experiment, the moisture absorptive and desorptive properties were the best when active clay was added. Furthermore, as the amount of added porous materials increased, the moisture absorptive and desorptive properties improved. When 70 mass% of active clay was added to ${\alpha}$-type gypsum, the hygroscopicity was the highest, about $300g/m^2$, in this experiment.

A Study on the Fabric Trend in Sports Wear (최근 스포츠웨어의 소재경향에 관한 연구)

  • Lee, Eui-Jeong;Baik, Cheon-Eui
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.10 no.3
    • /
    • pp.47-59
    • /
    • 2008
  • The recent trend of Sports Wear is seeking functionality and fashion at the same time, where the spread of sportism becomes caual style leading street fashion. Sports Wear is classified into active Sports Wear and Sports casual Wear, in which active Sports Wear is expanded to a mixture with Sports casual wear. The purpose of this study is to research the trend of materials used in active Sports Wear and Sports casual wear. Materials used for jacket/jumper, pants and t-shirts of active Sports Wear and Sports casual wear, and high-tech functional materials used for active Sports Wear have been analyzed. The results of the study are the following: a) Most of the materials used for Sports Wear are polyester, nylon, cotton, and a mixture of cotton and polyester. Active Sports Wear uses functional materials and texture such as Dri-Fit, which absorbs and dries fast, whereas Sports casual wear satin, cire and denim has been used to keep up with the trend rather than focusing in functionality: b) companies such as Nike and Adidas have used many high-tech materials to emphasize the functionality of Sports Wear, while Puma stresses on fashion rather than function, however uses spandex in order for the consumer to feel comfortable during physical activities; c) active Sports Wear in jacket/jumper, pants and t-shirts uses functional material and texture, however Sports casual wear uses satin and cire to keep up with the fashion trend rather than functionality; d) and Nike uses high-tech funtional materials for its Sports Wear in therma-fit, Clima-fit, Dri-fit and storm-fit, whereas Adidas uses Clirna-lite, Clirna-proof, Clima-warm, and Clirna-cool in their active Sports Wear.

  • PDF

Recent Advances in TAOS-TFT

  • Hosono, Hideo;Nomura, Kenji;Kamiya, Toshio
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1671-1672
    • /
    • 2007
  • PDF

Hafnium doping effect in a zinc oxide channel layer for improving the bias stability of oxide thin film transistors

  • Moon, Yeon-Keon;Kim, Woong-Sun;Lee, Sih;Kang, Byung-Woo;Kim, Kyung-Taek;Shin, Se-Young;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.252-253
    • /
    • 2011
  • ZnO-based thin film transistors (TFTs) are of great interest for application in next generation flat panel displays. Most research has been based on amorphous indium-gallium-zinc-oxide (IGZO) TFTs, rather than single binary oxides, such as ZnO, due to the reproducibility, uniformity, and surface smoothness of the IGZO active channel layer. However, recently, intrinsic ZnO-TFTs have been investigated, and TFT- arrayss have been demonstrated as prototypes of flat-panel displays and electronic circuits. However, ZnO thin films have some significant problems for application as an active channel layer of TFTs; it was easy to change the electrical properties of the i-ZnO thin films under external conditions. The variable electrical properties lead to unstable TFTs device characteristics under bias stress and/or temperature. In order to obtain higher performance and more stable ZnO-based TFTs, HZO thin film was used as an active channel layer. It was expected that HZO-TFTs would have more stable electrical characteristics under gate bias stress conditions because the binding energy of Hf-O is greater than that of Zn-O. For deposition of HZO thin films, Hf would be substituted with Zn, and then Hf could be suppressed to generate oxygen vacancies. In this study, the fabrication of the oxide-based TFTs with HZO active channel layer was reported with excellent stability. Application of HZO thin films as an active channel layer improved the TFT device performance and bias stability, as compared to i-ZnO TFTs. The excellent negative bias temperature stress (NBTS) stability of the device was analyzed using the HZO and i-ZnO TFTs transfer curves acquired at a high temperature (473 K).

  • PDF

Active Vibration Control of a Planar Parallel Manipulator using Piezoelectric Materials (압전소자를 이용한 수평 병렬형 머니풀레이터의 능동 진동 제어)

  • 강봉수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.59-67
    • /
    • 2003
  • This paper presents a new approach for the use of smart materials, piezoelectric materials of PVDF and PZT, for vibration attenuation of a planar parallel manipulator. Since lightweight linkages of parallel manipulators deform under high acceleration/deceleration, an active damper is needed to attenuate vibration due to structural flexibility of linkages. Based on the dynamic model of a planar parallel manipulator, an active damping controller is developed, which consists of a PD feedback control scheme, applied to linear electrical motors, and a linear velocity feedback (L-type) scheme applied to either PVDF layer or PZT actuator(5). Simulation results show that piezoelectric materials yield good damping performance, resulting in precise manipulations of a planar parallel manipulator.

A Study on Men류s Fashion Images and the characteristics of Textile Materials Used for Fashion Images Shown in Men류s Fashion Trend Information (남성복 패션 이미지 분류와 이미지별 텍스타일 소재특성에 관한 분석 연구)

  • 김희선
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.1 no.1
    • /
    • pp.53-71
    • /
    • 1999
  • The purpose of this study is to determine the fashion images implied in men's fashion trends and systematize the characteristics of the textile materials used for fashion images, by analyzing men's fashion trends published by Korean fashion information service companies. This study would be meaningful if it can suggest some objective criteria for the characteristics of textile per fashion image. The researcher analyzed the data on the basis of 8 fashion images, which were ethnic, modern, traditional, avant-garde, active, romantic, natural, techno ones. Above men's fashion images were choosed by analyze the some literatures and men's fashion trend information. The data used for this study were information about S/S and F/W men's fashion trends published by Interfashion planning, Samsung fashion Research Center for the period of 1995-2000. The data collected were subject to “content analysis method”. As a result of the analysis, the major images of 1995-2000 were natural, active, traditional, modern, ethnic, avant-garde, techno images, and while such combinations of conflicting images as ethnic/modern, traditional/avant-garde, natural/techno. Other mixed images were ethnic/natural, modern/active, tradional/active, traditional/modern, romantic/modern, ethnic/romantic, traditional/natural, modern/natural, active/natural, active/traditional/natural, etc. The various characteristics of eight men's fashion images were found in color, pattern and textile materials.

  • PDF

Computational screening of electroactive indolequinone derivatives as high-performance active materials for aqueous redox flow batteries

  • Han, Young-Kyu;Jin, Chang-Soo
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1507-1512
    • /
    • 2018
  • The development of an organic-based aqueous redox flow battery (RFB) using quinone as an electroactive material has attracted great attention recently. This is because this battery is inexpensive, produces high energy density, and is environment friendly in stationary electrical energy storage applications. Herein, we investigate the redox potentials and solubilities of indole-5,6-quinone and indole-4,7-quinone derivatives in terms of the substituent effects of functional groups using theoretical calculations. Our results indicate that full-site substituted derivatives of indolequinone are more useful as active materials compared to single-site substituted derivatives. In particular, our calculations reveal that the substitution of $-PO_3H_2$ and $-SO_3H$ functional groups with multiple polar bonds is very effective in increasing the activity of the aqueous RFB. As a strategy to overcome the limitation that the aqueous solubility is intrinsically low because they are organic molecules, we suggest the substitution of functional groups with multiple polar bonds to the backbones of active organic materials. Among 180 indolequinone derivatives, 17 candidates that meet the redox potential standards ($${\leq_-}0.2V$$ or $${\geq_-}0.9V$$) and eight candidates with solubility exceeding 2 mol/L are identified. Three indolequinone derivatives that satisfy both conditions are finally presented as promising electroactive candidates for an aqueous RFB.

Research Trends in Low-Cost Photoactive Layer Materials for Organic Solar Cells (유기태양전지 저비용 광활성층 재료의 개발 동향)

  • Soyoung Kim;Wonho Lee
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.143-151
    • /
    • 2024
  • Organic photovoltaics (OPVs) have shown great potential as a new generation of energy harvesters because they possess many unique properties, including mechanical flexibility, lightweight, semi-transparency, and low-fabrication costs. Recent advancements in molecular structure and device engineering have led to achieving power conversion efficiency (PCE) exceeding 19%. However, these highly efficient active layer materials have been hampered in their commercialization by complex synthesis steps that result in high manufacturing costs. To address this issue, research is actively underway on low-cost active layer materials with simple structures. This paper introduces such cost-effective active layer materials and strategies for their synthesis.

Vibratory Loads Reduction Analysis of Active Trailing-edge Flap Blades Using Single Crystal Piezoelectric Actuators (단결정 압전작동기를 사용한 능동 뒷전플랩 블레이드의 진동하중 감소해석)

  • Park, Jae-Sang;Kim, Tae-Seong;Shin, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.326-331
    • /
    • 2007
  • This paper conducts a vibratory loads reduction analysis of an Advanced Active Trailing-edge Flap (AATF) blade utilizing single crystal piezoelectric actuators. For an AATF blade, a new L-L piezostack actuator using single crystal PMN-PT materials is designed. The AATF blade is designed to have similar characteristics to the Advanced Active Twist Rotor (AATR) blade. The active trailingedge flap is assumed to be 20% of the blade span and 15% of the chord, located at 75% of the blade radius. In order to conduct the vibratory loads reduction analysis of the AATF blade in forward flight, DYMORE, a multi-body dynamics analysis code, is used. The simulation result shows that the hub vibratory loads may be reduced by approximately 89% even with a much lower input-voltage when comparing with the other active rotor systems.

  • PDF