• Title/Summary/Keyword: Active learning model

Search Result 317, Processing Time 0.022 seconds

A Study on the Development of a Teaching-learning Model for Active Learning in Engineering Education (공학교육에서의 Active Learning 교수-학습 모형 개발 연구)

  • Kim, Na-Young;Kang, Donghee
    • Journal of Engineering Education Research
    • /
    • v.22 no.6
    • /
    • pp.12-20
    • /
    • 2019
  • The purpose of this study is to development of a teaching-learning model for active learning in engineering education. For this, the adequacy between educational objectives and active learning activities is verified and furthermore an "active learning teaching-learning model" is suggested. This suggested teaching-learning model is expected to supplement weakness of traditional lecture-type teaching-learning activity. Based on the literature review, first, the representative activities of active learning were derived. there are twenty active learning activities, which compose of five of individual learning activity, five of pair-learning activity and five of group-learning activity, and five of alternative- learning activity. In addition, a survey on adequacy between designed active learning activities and learning outcomes were conducted to ten educational experts. Lawshe's content validity calculation method was applied to analyze the validity of this study. Second, five teaching-learning principles, such as thinking, interaction, expression, reflection, and evaluation were derived to develop an "active learning teaching-learning model" which supplements lecture-type classes and then the "TIERA teaching-learning model" which consists of five stages was designed. Finally, based on the survey on educational experts, adequate active learning activities were proposed to apply in each stage of the "TIERA teaching-learning model" and as a result the TIERA model's active learning activities were developed. The result of this study shows that some activities of active learning are appropriate to induce high cognitive learning skills from the learners even in traditional lecture-type classrooms and therefore this study suggests meaningful direction to new paradigm of teaching-learning for engineering education. This study also suggests that instructors of engineering education can turn their traditional teaching-learning activities into dynamic learning activities by utilizing "active learning teaching-learning model".

Asymmetric Semi-Supervised Boosting Scheme for Interactive Image Retrieval

  • Wu, Jun;Lu, Ming-Yu
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.766-773
    • /
    • 2010
  • Support vector machine (SVM) active learning plays a key role in the interactive content-based image retrieval (CBIR) community. However, the regular SVM active learning is challenged by what we call "the small example problem" and "the asymmetric distribution problem." This paper attempts to integrate the merits of semi-supervised learning, ensemble learning, and active learning into the interactive CBIR. Concretely, unlabeled images are exploited to facilitate boosting by helping augment the diversity among base SVM classifiers, and then the learned ensemble model is used to identify the most informative images for active learning. In particular, a bias-weighting mechanism is developed to guide the ensemble model to pay more attention on positive images than negative images. Experiments on 5000 Corel images show that the proposed method yields better retrieval performance by an amount of 0.16 in mean average precision compared to regular SVM active learning, which is more effective than some existing improved variants of SVM active learning.

Optimal Design of Semi-Active Mid-Story Isolation System using Supervised Learning and Reinforcement Learning (지도학습과 강화학습을 이용한 준능동 중간층면진시스템의 최적설계)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.73-80
    • /
    • 2021
  • A mid-story isolation system was proposed for seismic response reduction of high-rise buildings and presented good control performance. Control performance of a mid-story isolation system was enhanced by introducing semi-active control devices into isolation systems. Seismic response reduction capacity of a semi-active mid-story isolation system mainly depends on effect of control algorithm. AI(Artificial Intelligence)-based control algorithm was developed for control of a semi-active mid-story isolation system in this study. For this research, an practical structure of Shiodome Sumitomo building in Japan which has a mid-story isolation system was used as an example structure. An MR (magnetorheological) damper was used to make a semi-active mid-story isolation system in example model. In numerical simulation, seismic response prediction model was generated by one of supervised learning model, i.e. an RNN (Recurrent Neural Network). Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm The numerical simulation results presented that the DQN algorithm can effectively control a semi-active mid-story isolation system resulting in successful reduction of seismic responses.

Development of Semi-Active Control Algorithm Using Deep Q-Network (Deep Q-Network를 이용한 준능동 제어알고리즘 개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.79-86
    • /
    • 2021
  • Control performance of a smart tuned mass damper (TMD) mainly depends on control algorithms. A lot of control strategies have been proposed for semi-active control devices. Recently, machine learning begins to be applied to development of vibration control algorithm. In this study, a reinforcement learning among machine learning techniques was employed to develop a semi-active control algorithm for a smart TMD. The smart TMD was composed of magnetorheological damper in this study. For this purpose, an 11-story building structure with a smart TMD was selected to construct a reinforcement learning environment. A time history analysis of the example structure subject to earthquake excitation was conducted in the reinforcement learning procedure. Deep Q-network (DQN) among various reinforcement learning algorithms was used to make a learning agent. The command voltage sent to the MR damper is determined by the action produced by the DQN. Parametric studies on hyper-parameters of DQN were performed by numerical simulations. After appropriate training iteration of the DQN model with proper hyper-parameters, the DQN model for control of seismic responses of the example structure with smart TMD was developed. The developed DQN model can effectively control smart TMD to reduce seismic responses of the example structure.

A general active-learning method for surrogate-based structural reliability analysis

  • Zha, Congyi;Sun, Zhili;Wang, Jian;Pan, Chenrong;Liu, Zhendong;Dong, Pengfei
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.167-178
    • /
    • 2022
  • Surrogate models aim to approximate the performance function with an active-learning design of experiments (DoE) to obtain a sufficiently accurate prediction of the performance function's sign for an inexpensive computational demand in reliability analysis. Nevertheless, many existing active-learning methods are limited to the Kriging model, while the uncertainties of the Kriging itself affect the reliability analysis results. Moreover, the existing general active-learning methods may not achieve a fully satisfactory balance between accuracy and efficiency. Therefore, a novel active-learning method GLM-CM is constructed to yield the issues, which conciliates several merits of existing methods. To demonstrate the performance of the proposed method, four examples, concerning both mathematical and engineering problems, were selected. By benchmarking obtained results with literature findings, various surrogate models combined with the proposed method not only provide an accurate reliability evaluation while highly alleviating the computational burden, but also provides a satisfactory balance between accuracy and efficiency compared to the other reliability methods.

Effect and Design of a Teaching-Learning Model for Flipped Learning in Elementary School Mathematics Based on a Student's Active Learning Model (학생능동수업모델에 기반한 초등학교 수학과 플립러닝 교수·학습 모델 설계 및 효과)

  • Joo, Hye Jin;Ryu, Hyun Ah
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.22 no.3
    • /
    • pp.241-266
    • /
    • 2018
  • The purpose of this study were to design and apply a teaching-learning model for flipped learning in elementary school mathematics based on a student's active learning model for mathematics, and then to examine their effects. Finally, this suggests two points to consider when applying flipped learning to young learners. The results of this study are as follows. First, The model showed meaningful results that improved learners' academic achievement. Second, The application of flipped learning, which reflects the characteristics of the mathematics department, gave learners a higher level of satisfaction than traditional classes. Third, as a result of analyzing students' testimonies, it was possible to form a habit of self-study without help of anyone at the desired time and place, and to solve the problem created beforehand with friends so that self-directed learning habit formation and interest in class respectively.

  • PDF

Research on Hyperparameter of RNN for Seismic Response Prediction of a Structure With Vibration Control System (진동 제어 장치를 포함한 구조물의 지진 응답 예측을 위한 순환신경망의 하이퍼파라미터 연구)

  • Kim, Hyun-Su;Park, Kwang-Seob
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.51-58
    • /
    • 2020
  • Recently, deep learning that is the most popular and effective class of machine learning algorithms is widely applied to various industrial areas. A number of research on various topics about structural engineering was performed by using artificial neural networks, such as structural design optimization, vibration control and system identification etc. When nonlinear semi-active structural control devices are applied to building structure, a lot of computational effort is required to predict dynamic structural responses of finite element method (FEM) model for development of control algorithm. To solve this problem, an artificial neural network model was developed in this study. Among various deep learning algorithms, a recurrent neural network (RNN) was used to make the time history response prediction model. An RNN can retain state from one iteration to the next by using its own output as input for the next step. An eleven-story building structure with semi-active tuned mass damper (TMD) was used as an example structure. The semi-active TMD was composed of magnetorheological damper. Five historical earthquakes and five artificial ground motions were used as ground excitations for training of an RNN model. Another artificial ground motion that was not used for training was used for verification of the developed RNN model. Parametric studies on various hyper-parameters including number of hidden layers, sequence length, number of LSTM cells, etc. After appropriate training iteration of the RNN model with proper hyper-parameters, the RNN model for prediction of seismic responses of the building structure with semi-active TMD was developed. The developed RNN model can effectively provide very accurate seismic responses compared to the FEM model.

Chest Radiography of Tuberculosis: Determination of Activity Using Deep Learning Algorithm

  • Ye Ra Choi;Soon Ho Yoon;Jihang Kim;Jin Young Yoo;Hwiyoung Kim;Kwang Nam Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • Background: Inactive or old, healed tuberculosis (TB) on chest radiograph (CR) is often found in high TB incidence countries, and to avoid unnecessary evaluation and medication, differentiation from active TB is important. This study develops a deep learning (DL) model to estimate activity in a single chest radiographic analysis. Methods: A total of 3,824 active TB CRs from 511 individuals and 2,277 inactive TB CRs from 558 individuals were retrospectively collected. A pretrained convolutional neural network was fine-tuned to classify active and inactive TB. The model was pretrained with 8,964 pneumonia and 8,525 normal cases from the National Institute of Health (NIH) dataset. During the pretraining phase, the DL model learns the following tasks: pneumonia vs. normal, pneumonia vs. active TB, and active TB vs. normal. The performance of the DL model was validated using three external datasets. Receiver operating characteristic analyses were performed to evaluate the diagnostic performance to determine active TB by DL model and radiologists. Sensitivities and specificities for determining active TB were evaluated for both the DL model and radiologists. Results: The performance of the DL model showed area under the curve (AUC) values of 0.980 in internal validation, and 0.815 and 0.887 in external validation. The AUC values for the DL model, thoracic radiologist, and general radiologist, evaluated using one of the external validation datasets, were 0.815, 0.871, and 0.811, respectively. Conclusion: This DL-based algorithm showed potential as an effective diagnostic tool to identify TB activity, and could be useful for the follow-up of patients with inactive TB in high TB burden countries.

Applications of Experiential Learning Theory to Graduate Medical Education (졸업 후 의학교육에 경험학습이론의 활용)

  • Lee, Young Hee;Kim, Byung Soo
    • Korean Medical Education Review
    • /
    • v.11 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • The purpose of this study was to introduce the concepts of experiential learning and the Kolb's model, and to review some applications of experiential learning theory in graduate medical education. The published literature on GME and education for general practitioners applying the experiential theory and the Kolb's model was reviewed. Experience learning defined the cyclical learning process which emphasizes the learners' reflective thinking of the learners' concrete experiences and their active participation in continuous learning actives. Kolb includes this 'cycle of learning' as a central principle in his experiential learning theory. This is typically expressed as a four-stage cycle of learning. Kolb's cycle moves through concrete experience(CE), reflective observation(RO), abstract conceptualization(AC) and active experimentation(AE). Components of continuing education of the adult learner were based on autonomy, context of learning, and competence and performance as educational objectives. Some strategies for graduate medical education were reflective thinking, self-directed learning, morning reporting and feedback with peer review, etc. Opportunities for learning from experience in practical life can be made to enhance reflective thinking and performance of practitioners. Strategies to develop reflective practice among physicians should be explored by further research.