• Title/Summary/Keyword: Active failure

Search Result 403, Processing Time 0.025 seconds

A Six Pole Permanent Magnet Biased Homopolar Magnetic Bearing with Fault-Tolerant Capability

  • Uhn Joo Na
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_1
    • /
    • pp.231-238
    • /
    • 2023
  • This paper develops the theory for a novel fault-tolerant, permanent magnet biased, 6-active-pole, homopolar magnetic bearing. The Lagrange Multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrices for the failed bearing. some numerical examples of distribution matrices are provided to illustrate the new theory. Simulations show that very much the same dynamic responses (orbits or displacements) are maintained throughout failure events (up to any combination of 3 coils failed for the 6 pole magnetic bearing) while currents and fluxes change significantly. The overall load capacity of the bearing actuator is reduced as coils fail. The same magnetic forces are then preserved up to the load capacity of the failed bearing.

Active Control of Offshore Structures for Wave Response Reduction Using Probabilistic Neural Network

  • Kim, Doo-Kie;Kim, Dong-Hyawn;Chang, Sang-Kil;Chang, Seong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.1-8
    • /
    • 2006
  • Offshore structures are subjected to wave, wind, and earthquake loads. The failure of offshore structures can cause sea pollution, as well as losses of property and lives. Therefore, safety of the structure is an important issue. The reduction of the dynamic response of offshore towers, subjected wind generated random ocean waves, is a critical problem with respect to serviceability, fatigue life and safety of the structure. In this paper, a structural control method is proposed to control the vibration of offshore structures by the probabilistic neural network (PNN). The state vectors of the structure and control forces are used for training patterns of the PNN, in which control forces are prepared by linear quadratic regulator (LQR) control algorithm. The proposed algorithm is applied to a fixed offshore structure under random ocean waves. Active control of the fixed offshore structure using the PNN control algorithm shows good results.

Seismic Performance Assessment of High-Rise Building installed with Multiple Active Tuned Mass Dampers (다중 능동형 동조질량감쇠기가 설치된 고층빌딩의 내진성능 평가)

  • Park, Kwan-Soon;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.89-97
    • /
    • 2017
  • The tuned mass damper (TMD) system was first proposed as an efficient vibration control method for high-rise buildings, and multiple TMD (MTMD) system was then proposed for the purpose of improving the robust performance. Thereafter, the active TMD (ATMD) is proposed to improve the vibration control performance over the TMD and MTMD systems. However, this system may experience an system-instability problem in case of the actuator malfunction. In order to overcome such limitations of actuator malfunction causing the instability of the structural system, in this study, we investigate the feasibility of the multiple ATMD (MATMD) system that facilitates both advantages of the MTMD and ATMD. Numerical example demonstrates that, when the proposed system is designed to have the same capacity as the ATMD, it shows a similar control performance to the ATMD, but also has very good adaptive control performance against the emergency situations such as actuator failures.

A New Low-Cost Active Power Filter to Suppress Neutral Current Harmonics in Three-Phase Four-Wire System (3상 4선식 배전계통에서 중성선 전류 제거를 위한 새로운 저가형 능동전력필터)

  • 장민수;최세완;김기영
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.359-365
    • /
    • 2002
  • Three-phase four-wire electrical distribution systems have been widely employed in manufacturing plants, commercial and residential buildings. Due to the nonlinear loads, the neutral conductor carries excessive harmonic currents resulting in wiring failure of the neutral conductor, overloading of the distribution transformer and a voltage drop between the neutral and the ground. This paper proposes a reduced rating active power filter to suppress neutral current harmonics in three-phase four-wire electrical distribution systems. The proposed system is simple in control and the VA rating of the inverter could be significantly reduced since only the fundamental current due to unbalanced loading flows through the inverter switch. The experimental results on a prototype validate the proposed control approach.

Analysis of Time Domain Active Sensing Data from CX-100 Wind Turbine Blade Fatigue Tests for Damage Assessment

  • Choi, Mijin;Jung, Hwee Kwon;Taylor, Stuart G.;Farinholt, Kevin M.;Lee, Jung-Ryul;Park, Gyuhae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.93-101
    • /
    • 2016
  • This paper presents the results obtained using time-series-based methods for structural damage assessment. The methods are applied to a wind turbine blade structure subjected to fatigue loads. A 9 m CX-100 (carbon experimental 100 kW) blade is harmonically excited at its first natural frequency to introduce a failure mode. Consequently, a through-thickness fatigue crack is visually identified at 8.5 million cycles. The time domain data from the piezoelectric active-sensing techniques are measured during the fatigue loadings and used to detect incipient damage. The damage-sensitive features, such as the first four moments and a normality indicator, are extracted from the time domain data. Time series autoregressive models with exogenous inputs are also implemented. These features could efficiently detect a fatigue crack and are less sensitive to operational variations than the other methods.

Study on the Tx/Rx Beam Performance of Planar Active Phased Array Antenna for Airborne as using the Near-field Measurement (근접전계 시험을 이용한 항공기용 평면형 능동 위상 배열 안테나 송수신 빔 성능 검증에 관한 연구)

  • Kim, Young-Wan;Lee, Jaemin;Lee, Yuri;Kim, JongPhil;Park, Jong-Kuk;Park, Kyuchul;Kim, Sunju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • In this paper, we described about methods and results to verify the Tx/Rx beam characteristics of a planar active phased array antenna as using a near-field measurement. The near-field system can effectively measure multiple beams and predict the performance degradation due to the partial failure of individual elements. Also, it can accurately predict the EIRP relating to detection performance of the active phased array radar. We briefly described the near-field measurement method to verify the Tx/Rx beam characteristics, and then verified the effectiveness of measurement method by analyzing the measured results.

Dynamic Load Suppression in Active Vibration Control of Rotating Machinery (회전 물체의 동적 하중에 대한 능동 진동 제어)

  • 김주형;김상섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1126-1131
    • /
    • 2001
  • Excessive vibration in rotating machinery is a problem encountered in many different fields, causing such difficulties as fatigue of machinery components and failure of supporting bearings. Passive techniques, though sometimes limited in their capabilities, have been used in the past to attenuated vibrations. Recently active techniques have been developed to provide vibration control perform beyond that provided by their passive counters. Most often, the focus of active control methods has been to suppress rotating machinery displacements. In cases where vibration results in bearing failures, displacement suppression may not be the best choice of control approaches (it can, in fact, increase dynamic bearing loads which would be even more harmful to bearings). This paper presents two optimal control methods for attenuating steady state vibrations in rotating machinery. One method minimizes shaft displacements while the other minimizes dynamic bearing reaction forces. The two methods are applied to a model of a typical rotating machinery system and their results are compared. It is found that displacement minimization can increase bearing loads, while bearing load minimization, on the other hand, decreases bearing loads.

  • PDF

Reliability assessment of semi-active control of structures with MR damper

  • Hadidi, Ali;Azar, Bahman Farahmand;Shirgir, Sina
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.131-141
    • /
    • 2019
  • Structural control systems have uncertainties in their structural parameters and control devices which by using reliability analysis, uncertainty can be modeled. In this paper, reliability of controlled structures equipped with semi-active Magneto-Rheological (MR) dampers is investigated. For this purpose, at first, the effect of the structural parameters and damper parameters on the reliability of the seismic responses are evaluated. Then, the reliability of MR damper force is considered for expected levels of performance. For sensitivity analysis of the parameters exist in Bouc- Wen model for predicting the damper force, the importance vector is utilized. The improved first-order reliability method (FORM), is used to reliability analysis. As a case study, an 11-story shear building equipped with 3 MR dampers is selected and numerically obtained experimental data of a 1000 kN MR damper is assumed to study the reliability of the MR damper performance for expected levels. The results show that the standard deviation of random variables affects structural reliability as an uncertainty factor. Thus, the effect of uncertainty existed in the structural model parameters on the reliability of the structure is more than the uncertainty in the damper parameters. Also, the reliability analysis of the MR damper performance show that to achieve the highest levels of nominal capacity of the damper, the probability of failure is greatly increased. Furthermore, by using sensitivity analysis, the Bouc-Wen model parameters which have great importance in predicting damper force can be identified.

Vessel traffic geometric probability approaches with AIS data in active shipping lane for subsea pipeline quantitative risk assessment against third-party impact

  • Tanujaya, Vincent Alvin;Tawekal, Ricky Lukman;Ilman, Eko Charnius
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.267-284
    • /
    • 2022
  • A subsea pipeline designed across active shipping lane prones to failure against external interferences such as anchorage activities, hence risk assessment is essential. It requires quantifying the geometric probability derived from ship traffic distribution based on Automatic Identification System (AIS) data. The actual probability density function from historical vessel traffic data is ideal, as for rapid assessment, conceptual study, when the AIS data is scarce or when the local vessels traffic are not utilised with AIS. Recommended practices suggest the probability distribution is assumed as a single peak Gaussian. This study compares several fitted Gaussian distributions and Monte Carlo simulation based on actual ship traffic data in main ship direction in an active shipping lane across a subsea pipeline. The results shows that a Gaussian distribution with five peaks is required to represent the ship traffic data, providing an error of 0.23%, while a single peak Gaussian distribution and the Monte Carlo simulation with one hundred million realisation provide an error of 1.32% and 0.79% respectively. Thus, it can be concluded that the multi-peak Gaussian distribution can represent the actual ship traffic distribution in the main direction, but it is less representative for ship traffic distribution in other direction. The geometric probability is utilised in a quantitative risk assessment (QRA) for subsea pipeline against vessel anchor dropping and dragging and vessel sinking.

Pseudo-static solution of active earth pressure against relief shelf retaining wall rotating around heel

  • Yun Que;Jisong Zhang;Chengcheng Long;Fuquan Chen
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.87-104
    • /
    • 2024
  • In practical engineering, the design process for most retaining walls necessitates careful consideration of seismic resistance. The prevention of retaining wall overturning is of paramount importance, especially in cases where the foundation's bearing capacity is limited. To research the seismic active earth pressure (ES) of a relieving retaining wall rotating around base (RB), the shear dissipation graphs across various operating conditions are analyzed by using Optum software, and the earth pressure in each region was derived by the inclined strip method combined with the limit equilibrium method. By observing shear dissipation graphs across various operating conditions, the distribution law of each sliding surface is summarized, and three typical failure modes are obtained. The corresponding calculation model was established. Then the resultant force and its action point were obtained. By comparing the theoretical and numerical solutions with the previous studies, the correctness of the derived formula is proved. The variation of earth pressure distribution and resultant force under seismic acceleration are studied. The unloading plate's position, the wall heel's length, and seismic acceleration will weaken the unloading effect. On the contrary, the length of the unloading plate and the friction angle of the filling will strengthen the unloading effect. The derived formula proposed in this study demonstrates a remarkable level of accuracy under both static and seismic loading conditions. Additionally, it serves as a valuable design reference for the prevention of overturning in relieving retaining walls.