• Title/Summary/Keyword: Active current source

Search Result 358, Processing Time 0.033 seconds

Single-phase Active Power Filter Based on Rotating Reference Frame Method for Harmonics Compensation

  • Kim, Jin-Sun;Kim, Young-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.94-100
    • /
    • 2008
  • This paper presents a new control method of single-phase active power filter (APF) for the compensation of harmonic current components in nonlinear loads. To facilitate the possibility of complex calculation for harmonic current detection of the single phase, a single-phase system that has two phases was constructed by including an imaginary second-phase giving time delay to the load current. The imaginary phase, which lagged the load current T/4 (Here T is the fundamental cycle) is used in the conventional method. But in this proposed method, the new signal as the second phase is delayed by the filter. Because this control method is applied to a single-phase system, an instantaneous calculation was developed by using the rotating reference frames synchronized to source-frequency rather than by applying instantaneous reactive power theory that uses the conventional fixed reference frames. The control scheme of single-phase APF for the current source with R-L loads is applied to a laboratory prototype to verify the proposed control method.

A design for a robust active power filter in unbalanced and distortion source voltages in three-phase four-wire systems (전원전압의 불평형 및 왜곡에 강인한 3상 4선식 전력용 능동 필터의 설계)

  • Min J.K.;Choi J.H.;Kim H.S.;Kim K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.729-733
    • /
    • 2003
  • This paper proposed a novel current control strategy on active power filters using p-q-r instantaneous power theory which can compensate the line current harmonics and the neutral line current in unbalanced and/or distorted source conditions in three-phase four-wire systems. The proposed current control method is based on a sinusoidal PWM for fully-digital implementation which was compared with a hysteresis PWM. Simulation results showed good performance of the proposed current control strategy on shunt type APFs.

  • PDF

A Study on the Self-Oscillating Mixer

  • Park, K. D.;S. Sakurazawa;H. Arai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.132-134
    • /
    • 2000
  • This paper presents self-oscillating mixer(SOM) with simple structure which includes dc source, a cross type groove, and a three terminal GaAsFET. By using parasitic elements such as cooper wires, If level of the active antenna is increased. In order to include active device into FDTD analysis, equivalent voltage source are used to substitute for the active device and to describe the voltage-current relationships. This approach is applied to analyze SOM theoretically.

  • PDF

Three Phase Voltage Source Soft Switching Inverter with High Frequency Pulse Current Transformers

  • Inaba, Claudio Y.;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.288-296
    • /
    • 2002
  • In this paper, a high frequency transformer - assisted auxiliary active resonant commutated snubber (HFTA-ARCS) for voltage source soft switching pulse width modulated power conversion circuits is presented. A three phase voltage source type soft switching inverter incorporating HFTA-ARCS circuits in its three bridge legs can reduce current rating of auxiliary active power switches and has sensorless simplified control scheme which any specified boost current management is not required for soft switching. Its operation principle and digital control scheme are described and a practical design method of circuit parameters on this HFTA-ARCS circuit is also introduced on the basis of computer simulation. Moreover, this space voltage vector modulated soft switching inverter system with DSP-based digital control scheme Is discussed and its effectiveness is proved on the basis of performance evaluations. The operating performances of this inverter system are also compared with those of conventional three-phase hard switching inverter under practical conditions of specified parameters.

A Grid Current-Controlling Shunt Active Power Filter

  • Tumbelaka, Hanny H.;Borle, Lawrence J.;Nayar, Chemmangot V.;Lee, Seong-Ryong
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.365-376
    • /
    • 2009
  • In this paper, the implementation of a three-phase shunt active power filter is presented. The filter is essentially three independent single-phase current-controlled voltage source inverters (CC-VSI) with a common DC bus. The CC- VSI is operated to directly control the AC grid current to be sinusoidal and in phase with the grid voltage without detecting the load currents. The APF consists of a current control loop, which shapes the grid currents to be sinusoidal and a voltage control loop, which regulates the active power balance of the system. The experimental results indicate that the active filter is able to handle predominantly the harmonics, as well as the unbalance and reactive power, so that the grid currents are sinusoidal, in phase with the grid voltages and symmetrical.

A Study on Series Active Power Filter Compensating Unbalanced Source Voltage in 3phase-3wire system (불평형 전원전압을 보상하는 3상3선식 직렬형 능동전력필터에 관한 연구)

  • 오재훈;한윤석;김영석;원충연;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.386-393
    • /
    • 2001
  • A series active power filter compensating current harmonics and unbalanced source voltages in a 3phase-3wire power system is presented. The system is composed of series active power filter and shunt passive filters that are tuned at 5th and 7th harmonics. The proposed series active power filter improves harmonic compensation characteristics of the shunt passive filters, reduces source side harmonic currents and compensates the unbalanced source voltages. In the proposed algorithm, compensation voltage for harmonic reduction is calculated by a performance function, and compensation voltage for the unbalanced source voltage is calculated based on the synchronous reference frame. Some results obtained from the experimental model using the proposed method are Presented to demonstrate and confirm its validity.

  • PDF

Active Power Filter Compensating for Source Voltage Unbalance/Current Harmonics and Power Factor Correction (전원 전압의 불평형과 고조파 전류 보상 및 역률 개선 기능을 가지는 능동전력 필터)

  • Lee Jong-Kun;Seok Jul-Ki;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.787-790
    • /
    • 2004
  • In this paper, a novel control scheme compensating for source voltage unbalance and current harmonics and power factor correction in unified active power filter systems combined with shunt passive filters is proposed, where no low/high-pass filter are used in deriving the reference voltage for compensation. Using digital all-pass filters, the phase angle and the reference voltages compensating for harmonic current and unbalanced voltage are derived from the positive sequence component of the unbalanced voltage. The amplitude of d-axis current in a series filter is controlled as zero for power factor correction. The validity of the proposed control scheme has been verified by experimental results.

  • PDF

Unified Active Power Filter Compensating For Source Voltage Unbalance/Current Harmonics and Power Factor Simultaneously (전원 전압의 불평형과 고조파 전류 및 역률을 동시에 보상하는 통합형 능동 전력필터)

  • Lee, Jong-Kun;Seok, Jul-Ki;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.103-105
    • /
    • 2004
  • In this paper, a novel control scheme compensating for source voltage unbalance and current harmonics and power factor simultaneously in unified active power filter systems combined with shunt passive filters is proposed, where no low/high-pass filter are used in deriving the reference voltage for compensation. Using digital all-pass filters, the phase angle and the reference voltages compensating for harmonic current and unbalanced voltage are derived from the positive sequence component of the unbalanced voltage. The amplitude of d-axis current in a series filter is controlled as zero for power factor correction. The validity of the proposed control scheme has been verified by experimental results.

  • PDF

A Study on the Over-Current Protection Method of A Series Active Compensator (직렬 능동 보상기의 과전류 보호방법에 관한 연구)

  • Chae, Beom-Seok;Lee, U-Cheol;Lee, Taek-Gi;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.321-329
    • /
    • 2002
  • A protection scheme for series active compensator is presented and analyzed in this paper. The proposed series active compensator operated as a high impedance K($\Omega$) to the fundamentals when short-circuit faults occur in the power distribution system, and two control strategies are proposed in this paper The first is the method by detecting the fundamental source current through the p-q theory, the second is the method by detecting the fundamental component of load current in Synchronous Reference Frame(SRF). When the short-circuit faults occur in the power distribution system, the proposed scheme can protect the series active compensator without additional protection circuits. The validity of the Proposed Protection scheme was investigated through experimental results.

A Series Active Power Filter For Harmonic Currents And Reactive Power Compensation (고조파 전류와 무효전력보상을 위한 직렬형 능동전력필터)

  • 김진선;고수현;김영석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.221-229
    • /
    • 2003
  • This paper suggests a control algorithm of 3-phase 3-wire series active power filter. This suggested algorithm can compensate source harmonics and reactive power in 3-phase 3-wire power distribution systems. These harmonics are generated by nonlinear loads such as diode rectifiers and thyristor converters. This control algorithm extracts a compensation voltage reference from performance function without phase transformation. Therefore, this control algorithm is simpler than any other conventional control algorithms. 3-phase 3-wire series active power filters which have a harmonic voltage source and a harmonic current source are manufactured and experiments are carried out to verify the effectiveness of suggested control algorithm.