• Title/Summary/Keyword: Active chemical

Search Result 2,282, Processing Time 0.05 seconds

Identification of Novel Irreversible Inhibitors of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) from Haemophilus influenzae

  • Han, Seong-Gu;Lee, Won-Kyu;Jin, Bong-Suk;Lee, Ki-In;Lee, Hyeong Ho;Yu, Yeon Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.329-334
    • /
    • 2013
  • Uridinediphospho-N-acetylglucosamine enolpyruvyl transferase (MurA, E.C. 2.5.1.7) is an essential bacterial enzyme that catalyzes the first step of the cell wall biosynthetic pathway, which involves the transfer of an enolpyruvyl group from phosphoenolpyruvate to uridinediphospho-Nacetylglucosamine. In this study, novel inhibitors of Haemophilus influenzae MurA (Hi MurA) were identified using high-throughput screening of a chemical library from the Korea Chemical Bank. The identified compounds contain a quinoline moiety and have much lower effective inhibitory concentrations ($IC_{50}$) than fosfomycin, a wellknown inhibitor of MurA. These inhibitors appear to covalently modify the sulfhydryl group of the active site cysteine (C117), since the C117D mutant Hi MurA was not inhibited by these compounds and excess dithiothreitol abolished their inhibitory activities. The increased mass value of Hi MurA after treatment with the identified inhibitor further confirmed that the active-site cysteine residue of Hi MurA is covalently modified by the inhibitor.

Ursolic Acid Isolated from Mume Fructus Inhibits Urease Activity of Helicobacter pylori (오매 추출물에 함유된 Ursolic Acid에 의한 Helicobacter pylori의 Urease 활성억제)

  • Park, Chan-El;Park, Chang-Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.591-596
    • /
    • 2013
  • Urease activity of Helicobacter pylori was most strongly inhibited by extract of Mume Fructus among ethanol (70%, v/v) extract of 6 herbal materials selected from our previous work, database on traditional herbal materials, and literature data on Korean plant resources. Active compounds in the extract of Mume Fructus were separated by batch extraction, and further purified by chromatography in a silica gel column and an octadecyl silica gel column using solvents of different polarity. By NMR analysis of the last chromatographic fraction we identified ursolic acid as the active compound of urease inhibition. The result suggests that this component in Mume Fructus can possibly be used for the eradication of H. pylori.

Isolation and identification of antifungal compounds from Reynoutria elliptica (호장근(Reynoutria elliptica)으로부터 항균활성 물질의 분리 및 구조결정)

  • Hwang, Joo-Tae;Park, Young-Sik;Kim, Young-Shin;Kim, Jin-Cheol;Lim, Chi-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.4
    • /
    • pp.583-589
    • /
    • 2012
  • In the continued research on natural fungicides for the control of plant diseases by using plant-derived products, we found that Reynoutria elliptica. had a strong fungicidal activity against several plant pathogens. R. elliptica (3.2 kg) were extracted with 80% aq. MeOH and the concentrated extracted was partitioned with n-hexane, EtOAc, n-BuOH and $H_2O$ successively. The four layers were tested their disease control efficacies against 4 plant disease such as rise blast (RCB), tomato grey mold (TGM), tomato late blight (TLB), and barly powdery mildew (BPM). The n-hexane fraction was highly active showing over 95% control against TLB and BPM. and the EtOAc fraction was highly active showing over 95% control against RCB, TLB, and BPM. By using silica gel chromatography, MPLC, and HPLC, three compounds that were expected to have antifungal activity were isolated. Their chemical structures were elucidated as physcion, emodin, and emodie-8-O-glucoside by EI-MS and NMR spectroscopic analyses.

Homology Modeling and Molecular Docking Analysis of Streptomyces peucetius CYP125A4 as C26 Monooxygenase

  • Lee, Seung-Won;Lee, Na-Rae;Lee, Ji-Hun;Oh, Tae-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1885-1889
    • /
    • 2012
  • Among 23 cytochrome P450s, CYP125A4 was proposed as a putative monooxygenase based on the high level of amino acid sequence homology (54% identity and 75% similarity) with the well characterized C27-steroid $Mycobacterium$ $tuberculosis$ CYP125A1. Utilizing MTBCYP125A1 as a template, homology modeling of SPCYP125A4 was conducted by Accelrys Discovery Studio 3.1 software. The modeled SPCYP125A4 structure with lowest energy value was subsequently assessed for its stereochemical quality and side-chain environment. The final model was generated by showing its active site through the molecular dynamics. The docking of steroids showed broad specificity of SPCYP125A4 with different orientation of ligand within active site facing the heme. One poses of C27-steroid with C26 facing the heme with distance of 3.734 ${\AA}$ from the Fe were predominant.

Multidimensional Conducting Agents for a High-Energy-Density Anode with SiO for Lithium-Ion Batteries

  • Lee, Suhyun;Go, Nakgyu;Ryu, Ji Heon;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.244-249
    • /
    • 2019
  • SiO has a high theoretical capacity as a promising anode material candidate for high-energy-density Li-ion batteries. However, its practical application is still not widely used because of the large volume change that occurs during cycling. In this report, an active material containing a mixture of SiO and graphite was used to improve the insufficient energy density of the conventional anode with the support of multidimensional conducting agents. To relieve the isolation of the active materials from volume changes of SiO/graphite electrode, two types of conducting agents, namely, 1-dimensional VGCF and 0-dimensional Super-P, were introduced. The combination of VGCF and Super-P conducting agents efficiently maintained electrical pathways among particles in the electrode during cycling. We found that the electrochemical performances of cycleability and rate capability were greatly improved by employing the conducting agent combinations of VGCF and Super-P compared with the electrode using only single VGCF or single Super-P. We investigated the detailed failure mechanisms by using systematic electrochemical analyses.

Effect of Integrated Use of Organic and Fertilizer N on Soil Microbial Biomass Dynamics, Turnover and Activity of Enzymes under Legume-cereal System in a Swell-shrink (Typic Haplustert) Soil.

  • Manna, M.C.;Swarup, A.
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.375-381
    • /
    • 2000
  • Quantifying the changes of soil microbial biomass and activity of enzymes are important to understand the dynamics of active soil C and N pools. The dynamics of soil microbial biomass C and N and the activity of enzymes over entire growth period of soybean-(Glycine max (L) Merr.)-wheat (Triticum aestivum L.) sequence on a Typic Haplustert as influenced by organic manure and inorganic fertilizer N were investigated in a field experiment. The application of farmyard manure at 4 to 16 $Mg{\cdot}ha^{-1}\;y^{-1}r^{-1}$ along with fertilizer nitrogen at 50 or 180 $kg{\cdot}ha^{-1}$ increased the mean soil microbial biomass from 1.12 to 2.05 fold over unmanured soils under soybean-wheat system. Irrespective of organic and chemical fertilizer N application, the soil microbial biomass was maximum during the first two months at active growing stage of the crops and subsequently declined with crop maturity. The mean annual microbial activity was significantly increased when manure and chemical fertilizer at 8 $Mg{\cdot}ha^{-1}$ and 50/180 N $kg{\cdot}ha^{-1}$, respectively were applied. The C turnover rate decreased by 47 to 72 % when the level of farmyard manure was increased from 4 to 8 and 16 $Mg{\cdot}ha^{-1}$. There were significant correlations between biomass C, available N, dehydrogenase, phosphatase and yield of the crops.

  • PDF

Fabrication of Ag/In2O3/TiO2/HNTs hybrid-structured and plasma effect photocatalysts for enhanced charges transfer and photocatalytic activity

  • Wang, Huiqin;Wu, Dongyao;Liu, Chongyang;Guan, Jingru;Li, Jinze;Huo, Pengwei;Liu, Xinlin;Wang, Qian;Yan, Yongsheng
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.164-174
    • /
    • 2018
  • The purpose of this work designed hybrid-structured and plasma effect photocatalyst of $Ag/In_2O_3/TiO_2/HNTs$ via sol-gel and photo-reduction methods. The structures, morphologies, optical and photoelectric performances of as-prepared photocatalysts were characterized via XRD, TEM, XPS, BET, UV-vis DRS, PL and photocurrents. The photocatalytic activity was evaluated by degradation of TC. The results showed that the hybrid-structure and plasma effect can effectively cause the multi-transfer of electrons and increase the separation rate of electron and hole pairs which obtained high photocatalytic activity. The photocatalytic degradation processes reveal that $^{\bullet}O_2{^-}$ and $h^+$ are major active species.

The Concentration of Magnolia Aroma Model Solution Using Pervaporation and Preparation of PVDF/PDMS Composite Membranes (투과증발법을 이용한 Magnolia Aroma 모델액의 농축 및 PVDF/PDMS 복합막의 제조)

  • Lee, Yong-Taek;Park, Joong-Won;Shin, Dong-Ho
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.14-22
    • /
    • 2007
  • This is the research about the concentration of trace Magnolia flavor components in water by pervaporation. We have investigated the change of selectivity depending on support membrane structure and active layer thickness using prepared PVDF/PDMS composite membrane. Through the pure water flux test for PVDF support membrane, we could indirectly confirm that as the coagulation temperature decreases and the polymer concentration increases, the surface porosity and pore diameter decreases. Appling these results to transport mechanism, we could explain the effect of support membrane structure for the composite membrane. The selectivity increases as the thickness of PDMS active layer increases. We could know that there is a limitation to describe the transport on the active layer by Fick's law through these results.

Identification of Amino Acid Residues Involved in Xylanase Activity from Bacillus alcalophilus AX2000 by Chemical Modifiers (화학수식제에 의한 Bacillus alcalophilus AX2000 유래 Xylanase의 활성에 관여하는 아미노산 잔기의 확인)

  • Park Young-Seo
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.121-128
    • /
    • 2006
  • The purified xylanase from Bacillus alcalophilus AX2000 was modified with various chemical modifiers to determine amino acid residues in the active site of the enzyme. Treatment of the enzyme with group-specific reagents such as carbodiimide or N-bromosuccinimide resulted in complete loss of enzyme activity. These results suggested that these reagents reacted with glutamic acid or aspartic acid and tryptophan residues located at or near the active site. In each case, inactivation was performed by pseudo first-order kinetics. Inhibition of enzyme activity by carbodiimide and N-bromosuccinimide showed non-competitive and competitive inhibition type, respectively. Addition of xylan to the enzyme solution containing N-bromosuccinimide prevented the inactivation, indicating the presence of tryptophan at the substrate binding site. Analysis of kinetics for inactivation showed that the loss of enzyme activity was due to modification of two glutamic acid or aspartic acid residues and single tryptophan residue.

A Stereochemical Aspect of Pyridoxal 5' -Phosphate Dependent Enzyme Reactions and Molecular Evolution

  • Jhee, Kwang-Hwan;Tohru, Yoshimura;Yoichi, Kurokawa;Nobuyoshi, Esaki;Kenji, Soda
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.695-703
    • /
    • 1999
  • We have studied the stereospecificities of various pyridoxal 5'-phosphate (PLP) dependent enzymes for the hydrogen transfer between the C-4' of a bound coenzyme and the C-2 of a substrate in the transamination catalyzed by the enzymes. Stereospecificities reflect the structures of enzyme active-sites, in particular the geometrical relationship between the coenzyme-substrate Schiff base and the active site base participating in an $\alpha$-hydrogen abstraction. The PLP enzymes studied so far catalyze only a si-face specific (pro-S) hydrogen transfer. This stereochemical finding suggests that the PLP enzymes have the same topological active-site structures, and that the PLP enzymes have evolved divergently from a common ancestral protein. However, we found that o-amino acid aminotransferase, branched chain L-amino acid aminotransferase, and 4-amino-4-deoxychorismate lyase, which have significant sequence homology with one another, catalyze a re-face specific (pro-R) hydrogen transfer. We also showed that PLP-dependent amino acid racemases, which have no sequence homology with any aminotransferases, catalyze a non-stereospecific hydrogen transfer: the hydrogen transfer occurs on both faces of the planar intermediate. Crystallographical studies have shown that the catalytic base is situated on the re-face of the C-4' of the bound coenzyme in o-amino acid aminotransferase and branched chain L-amino acid aminotransferase, whereas the catalytic base is situated on the si-face in other aminotransferases (such as L-aspartate aminotransferase) catalyzing the si-face hydrogen transfer. Thus, we have clarified the stereospecificities of PLP enzymes in relation with the primary structures and three-dimensional structures of the enzymes. The characteristic stereospecificities of these enzymes for the hydrogen transfer suggest the convergent evolution of PLP enzymes.

  • PDF