• Title/Summary/Keyword: Active catalyst

Search Result 476, Processing Time 0.031 seconds

Syndiotactic Polymerization of Styrene Catalyzed by Dinuclear (Cyclopentadienyl) (Aryloxy) Titanium(IV) Complexes with Polymethylene Bridge (폴리메틸렌 가지로 연결된 이핵 아릴옥시 티타늄 화합물을 이용한 스티렌의 신디오탁틱 중합)

  • Kum Don-Ho;Jung Woosung;Kim Kyungsik;Noh Seok Kyun;Lee Dong-Ho;Lyoo Won Seok
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.64-69
    • /
    • 2006
  • A series of dinuclear half-sandwich titanium complexes with aryloxy substituent at titanium$[(\eta^5-cyclopentadienyl)(aryloxy)TiCl_2]_2[(CH_2)_n]$ (n=3, n=6, n=9) have been successfully synthesized and their styrene polymerization properties have been investigated. All complexes are characterized by $^1H\;NMR,\;^{13}C\;NMR$, elemental analysis, and mass spectrometry. In order to examine the catalytic properties of the dinuclear complexes styrene polymerization has beer conducted in the presence of MMAO. It was found that (i) all the prepared complexes were very effective catalyst for the production of SPS (syndiotactic polystyrene), (ii) the complex with the longest bridge between the two active sites exhibited greatest catalytic activity among the three catalysts, but produced SPS with the smallest molecular weight, (iii) the activities of dinuclear half-titanocens with aryloxy substitution at titanium metal were greater than those of the chloride substituted compounds. These results indicate that not only the nature of the bridge between the two active sites but also the property of substituents at the metal exert a significant influence on the polymerization behaviors of the dinuclear half-titanocene.

Synthesis of Chromium Nitride and Evaluation of its Catalytic Property (크롬 질화물(CrN)의 합성 및 촉매특성에 관한 연구)

  • Lee, Yong-Jin;Kwon, Heock-Hoi
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.451-457
    • /
    • 2006
  • We synthesized phase pure CrN having surface areas up to $47m^2/g$ starting from $CrCl_{3}$ with $NH_{3}$. Thermal Gravimetric Analysis coupled with X-ray diffraction was carried out to identify solid state transition temperatures and the phase after each transition. In addition, the BET surface areas, pore size distributions, and crystalline diameters for the synthesized materials were analyzed. Space velocity influenced a little to the surface areas of the prepared materials, while heating rate did not. We believe it is due to the fast removal of reaction by-products from the system. Temperature programmed reduction results revealed that the CrN was hardly passivated by 1% $O_{2}$. Molecular nitrogen was detected from CrN at 700 and $950^{\circ}C$, which may be from lattice nitrogen. In temperature programmed oxidation with heating rate of 10 K/min in flowing air, oxidation started at or higher than $300^{\circ}C$ and resulting $Cr_{2}O_{3}$ phase was observed with XRD at around $800^{\circ}C$. However the oxidation was not completed even at $900^{\circ}C$. CrN catalysts were highly active for n-butane dehydrogenation reaction. Their activity is even higher than that of a commercial $Pt-Sn/Al_{2}O_{3}$ dehydrogenation catalyst in terms of volumetric reaction rate. However, CrN was not active in pyridine hydrodenitrogenation.

A Design Approach to $CrO_x/TiO_2$-based Catalysts for Gas-phase TCE Oxidation (기상 TCE 제거반응용 $CrO_x/TiO_2$계 복합 산화물 촉매 디자인)

  • Yang, Won-Ho;Kim, Moon-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.368-375
    • /
    • 2006
  • Single and complex metal oxide catalysts supported onto a commercial DT51D $TiO_2$ have been investigated for gas-phase TCE oxidation in a continuous flow type fixed-bed reaction system to develop a better design approach to catalysts for this reaction. Among the $TiO_2$-supported single metal oxides used, i.e., $CrO_x,\;FeO_x,\;MnO_x,\;LaO_x,\;CoO_x,\;NiO_x,\;CeO_x\;and\;CuO_x$, with the respective metal contents of 5 wt.%, the $CrO_x/TiO_2$ catalyst was shown to be most active for the oxidative TCE decomposition, depending significantly on amounts of $CrO_x\;on\;TiO_2$. The use of high $CrO_x$ loadings greater than 10 wt.% caused lower activity in the catalytic TCE oxidation, which is probably due to production of $Cr_2O_3$ crystallites on the surface of $TiO_2$. $CrO_x/TiO_2$-supported $CrO_x$-based bimetallic oxide catalysts were of particular interest in removal efficiency for this TCE oxidation reaction at reaction temperatures above $200^{\circ}C$, compared to that obtained with $CrO_x$-free complex metal oxides and a 10 wt.% $CrO_x/TiO_2$ catalyst. Catalytic activity of 5 wt.% $CrO_x-5$ wt.% $LaO_x$ in the removal reaction was similar to or slightly higher than that acquired for the $CrO_x$-only catalyst. Similar observation was revealed for 5 wt.% $CrO_x$-based bimetallic oxides consisting of either 5 wt.% $MnO_x,\;CoO_x,\;NiO_x\;or\;FeO_x$. These results represent that such $CrO_x$-based bimetallic systems for the catalytic TCE oxidation on significantly minimize the usage of $CrO_x$ that is well known to be one of very toxic heavy metals, and offer a very useful technique to design new type catalysts for reducing chlorinated volatile organic substances.

Characteristics of Pd Catalysts for Methane Oxidation (메탄 산화를 위한 Pd 촉매의 특성)

  • Lee, Jin-Man;Yang, O-Bong;Kim, Chun-Yeong;Woo, Seong-Ihl
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.557-562
    • /
    • 1999
  • The reaction properties of Pd. Pd-Ce and Pd-La catalysts supported on ${\gamma}-Al_2O_3$ were investigated in the oxidation reaction of methane($CH_4$) exhausted from the compressed natural gas vehicle in a U-tube flow reactor with gas hourly space velocity of $72,000h^{-1}$. The catalysts were characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), BET surface area and hydrogen chemisorption. Pd catalyst prepared by $Pd(NO_3)_2$ as a palladium precursor and calcined at $600^{\circ}C$ showed the highest activity for a methane oxidation. Catalytic activity of calcined $Pd/{\gamma}-Al_2O_3$ in which most of palladium was converted into palladium oxide species was higher than that of reduced $Pd/{\gamma}-Al_2O_3$ in which most of palladium existed in palladium metal by XRD. As increasing the number of reaction cycles in the wide range of redox, the catalytic activity of $Pd/{\gamma}-Al_2O_3$ was decreased and the highly active window became narrower. Lanthanum oxide promoted Pd catalyst, $Pd/La/{\gamma}-Al_2O_3$ showed enhanced thermal stability compared with $Pd/{\gamma}-Al_2O_3$ even after aging at $1000^{\circ}C$, which was ascribed to the role of La as a promoter to suppress the sintering of palladium metal and ${\gamma}-Al_2O_3$ support. Almost all of methane was removed by the reaction with NO at the redox ratio of 1.2 in case of oxygen excluded steam, but that activity was significantly decreased in the steam containing oxygen.

  • PDF

CO2 Methanation Characteristics over Ni Catalyst in a Pressurized Bubbling Fluidized Bed Reactor (가압 기포 유동층 반응기에서의 Ni계 촉매 CO2 메탄화 특성 연구)

  • Son, Seong Hye;Seo, Myung Won;Hwang, Byung Wook;Park, Sung Jin;Kim, Jung Hwan;Lee, Do Yeon;Go, Kang Seok;Jeon, Sang Goo;Yoon, Sung Min;Kim, Yong Ku;Kim, Jae Ho;Ryu, Ho Jeong;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.871-877
    • /
    • 2018
  • Storing the surplus energy from renewable energy resource is one of the challenges related to intermittent and fluctuating nature of renewable energy electricity production. $CO_2$ methanation is well known reaction that as a renewable energy storage system. $CO_2$ methanation requires a catalyst to be active at relatively low temperatures ($250-500^{\circ}C$) and selectivity towards methane. In this study, the catalytic performance test was conducted using a pressurized bubbling fluidized bed reactor (Diameter: 0.025 m and Height: 0.35 m) with $Ni/{\gamma}-Al_2O_3$ (Ni70%, and ${\gamma}-Al_2O_3$30%) catalyst. The range of the reaction conditions were $H_2/CO_2$ mole ratio range of 4.0-6.0, temperature of $300-420^{\circ}C$, pressure of 1-9 bar, and gas velocity ($U_0/U_{mf}$) of 1-5. As the $H_2/CO_2$ mole ratio, temperature and pressure increased, $CO_2$ conversion increases at the experimental temperature range. However, $CO_2$ conversion decreases with increasing gas velocity due to poor mixing characteristics in the fluidized bed. The maximum $CO_2$ conversion of 99.6% was obtained with the operating condition as follows; $H_2/CO_2$ ratio of 5, temperature of $400^{\circ}C$, pressure of 9 bar, and $U_0/U_{mf}$ of 1.4-3.

A Study on Catalytic Pyrolysis of Polypropylene with Ni/sand (Ni/sand를 이용한 폴리프로필렌 촉매 열분해 연구)

  • Kim, Soo Hyun;Lee, Roosse;Sohn, Jung Min
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.232-239
    • /
    • 2021
  • In order to develop a novel system named "thermal medium and gas circulation type pyrolysis system," this study was conducted to obtain basic data for process simulation before performing the pyrolysis experiment. Polypropylene (PP) was chosen as model material in the basic pyrolysis experiment instead of waste plastic and fluidized sand (hereinafter referred to as "sand"), and it was used as a heat transfer material in the "thermal medium and gas circulation type pyrolysis system." Ni was impregnated as an active catalyst on the sand to promote catalytic pyrolysis. The basic physical properties of PP were analyzed using a thermogravimetric analyzer, and pyrolysis was performed at 600 ℃ in an N2 atmosphere to produce liquid oil. The distribution of the carbon number of the liquid oil generated through the catalytic pyrolysis reaction was analyzed using GC/MS. We investigated the effects of varying the pyrolysis space velocity and catalyst amount on the yield of liquid oil and the carbon number distribution of the liquid oil. Using Ni/sand, the yield of liquid oil was increased except with the pyrolysis condition of 10 wt% Ni/sand at a space velocity of 30,000 h-1, and the composition of C6 ~ C12 hydrocarbons increased. With increases in the space velocity, higher yields of liquid oil were obtained, but the composition of C6 ~ C12 hydrocarbons was reduced. With 1 wt% Ni/sand, the oil yield obtained was greater than that obtained with 10 wt% Ni/sand. In summary, when 1 wt% Ni/sand was used at a space velocity of 10,000 h-1, the oil yield was 60.99 wt% and the composition of C6 ~ C12 hydrocarbons was highest at 42.06 area%.

A Study on Catalytic Activity of Oxygen Reduction Reaction and Performance of PEMFC using Pt/C Synthesized by Modified Polyol (수정된 폴리올법으로 합성된 Pt/C를 이용한 산소환원반응성 및 고분자전해질 연료전지 성능 연구)

  • Yang, Jongwon;Chu, Cheonho;Kwon, Yongchai
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.157-162
    • /
    • 2014
  • In this research, we investigate electrical performance and electrochemical properties of carbon supported Pt (Pt/C) that is synthesized by polyol method. With the Polyol_Pt/C that is adopted for oxygen reduction reaction (ORR) as cathode of proton exchange membrane fuel cells (PEMFCs), their catalytic activity and ORR performance and electrical performance are estimated and compared with commercial Pt/C(Johnson Mattey) catalyst. Their electrochemically active surface (EAS) area are measured by cyclic voltammetry (CV), respectively. On the other hand, regarding ORR activity and electrical performance of the catalysts, (i) linear sweeping voltammetry by rotating disk electrode and (ii) PEMFC single cell tests are used. The CV measurement demonstrate EAS of Polyol_Pt/C is compared with commercial JM_Pt/C. In case of Polyol_Pt/C, its half-wave potential, kinetic current density are excellent. Based on data obtained by half-cell test, when PEMFC single cell tests are carried out, current density measured at 0.6V and maximum power density of the PEMFC single cell employing Polyol_Pt/C are better than those employing commercial Pt/C. Conclusively, Polyol_Pt/C synthesized by modified polyol process shows better ORR catalytic activity and PEMFC performance than other catalysts.

Possibilities and Limitations of Media Representation as the Historical Communication -Focusing on Korea Films of Gwangju Democratization Movement in 2000s- (역사적 소통 공간으로써 미디어 재현의 가능성과 한계 -2000년대 한국 영화 속 광주 민주화 운동을 중심으로-)

  • Kim, Mi-Sun;Kim, Yu-Rye
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.157-169
    • /
    • 2015
  • This study focuses on Korea films of historical communication. Narrative analysis was conducted on the films in 2000s including , and <26 Years> that mainly have dealt with the 'Gwangju Democratization Movement'. As a result of the syntagmatic analysis, these films try to stabilize 'social imbalances' in the aspect of individuals and conceals issues of social structure. In addition, the result of paradigmatic analysis reveals that textual factors of 'active involvement of female characters', 'continuity of history through the survivors' demonstrate its strategies to publicize the historical truth. Consequently these films show its limitations that weakens historical meaning by placing unsolved problems of social structure as well as the love story. But rather than describing it as a history of the past, these films act as a catalyst to bring thins specific historical issue to our present lives and publicize it as a current issue. Therefore, the historical film not only allows current generation to remind to history but also to provide an opportunity to publicize the important issues of social structure in the present society.

Steam Reforming of Methanol for the Production of Hydrogen (수소제조를 위한 메탄올의 수증기 개질반응)

  • Kim, Sang-Chai;Jung, Chan-Hong;Yu, Eui-Yeon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.261-268
    • /
    • 1996
  • Various $Cu/SiO_2$ catalysts with copper concentration ranging from 0 to 50wt% were prepared by kneading method for the steam reforming of methanol. These catalysts were calcined at temperatures in the range of $400^{\circ}C{\sim}900^{\circ}C$ and then reduced in a $H_2$ atmosphere in the range of $150^{\circ}C{\sim}350^{\circ}C$. Steam reforming of methanol was carried out at atmospheric pressure over a temperature range of $200^{\circ}C{\sim}400^{\circ}C$, steam/methanol molar ratio of 0.4~1.6 and W/F of 3~25 g.-cat.hr./mol. Characterization of the catalysts was studied using IR, BET and XRD. Using copper nitrate as a precursor for catalysts, pH in the preparation of catalysts had a great effect on the catalytic activity, but pH in the preparation of catalysts, calcination temperature, and reducing temperature in $H_2$ atmosphere had no effect on the product distribution. Optimum copper concentration, calcination temperature and reducing temperature were 40wt%, $700^{\circ}C$ and $300^{\circ}C$, respective)y. Reaction temperature for maximum $H_2$ production was $275^{\circ}C$, and the formation of methane which lowered quantity and quality of $H_2$ would be inhibited below $275^{\circ}C$. $Cu^{\circ}-Cu_2O$ might be active species in $Cu/SiO_2$ catalyst.

  • PDF

Preparation and Characterization of New NiO-ZrO2/WO3 Catalyst for Ethylene Dimerization (에틸렌 이량화를 위한 새로운 NiO-ZrO2/WO3촉매의 제조와 특성)

  • Sohn, Jong Rack;Shin, Dong Cheol;Park, Man Young
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.1006-1014
    • /
    • 1996
  • A series of catalysts, $NiO-ZrO_2/WO_3$, for ethylene dimerization were prepared by coprecipitation from a solution of nickel chloride - zirconium oxychloride mixture followed by dry impregnation with an aqueous solution of ammonium metatungstate and calcination in air. On the basis of the results obtained from x-ray diffraction and DSC, the addition of NiO and $WO_3$ to $ZrO_2$ shifted the transition of $ZrO_2$ from amorphous to a tetragonal phase toward higher temperatures due to the interaction between NiO(or $WO_3$) and $ZrO_2$. $NiO-ZrO_2$ without $WO_3$ was inactive for the ethylene dimerization, but $NiO-ZrO_2/WO_3$ was found to be very active even at room temperature. The high catalytic activity of $NiO-ZrO_2/WO_3$ was closely correlated with the increase of acid strength by the inductive effect of $WO_3$.

  • PDF