• Title/Summary/Keyword: Active and reactive power

검색결과 446건 처리시간 0.02초

소수력 발전소에 적용하는 유도발전기의 동작 특성 (A Study on the Operation Characteristic of Induction Generator in the Small Hydropower Plant)

  • 김영국;김종겸
    • 전기학회논문지
    • /
    • 제62권5호
    • /
    • pp.632-638
    • /
    • 2013
  • In this study, we described voltage fluctuation characteristics of distribution line during starting and normal operation condition of the small hydro generators. Based on these theories, we scrutinized the starting and operating characteristics of induction generators installed in two small hydro power plants that is connected to the distribution line and researched necessary factors when selecting the generator type. The type of turbines and capacity of generators are different. One is below 1,000kW and the other is above 1,000kW. Two generators are tested during starting, and it acts as motor not generator at the instant that the machine is connected to the grid. After connecting to the grid, the machine rotates above synchronous speed before converting to the generator mode. Therefore the characteristic of the generator during starting is same as it of motor.

Stabilization of Fixed Speed Wind Generator by using Variable Speed PM Wind Generator in Multi-Machine Power System

  • Rosyadi, Marwan;Takahashi, Rion;Muyeen, S.M.;Tamura, Junji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권1호
    • /
    • pp.111-119
    • /
    • 2013
  • This paper present stabilization control of fixed speed wind generator by using variable speed permanent magnet wind generator in a wind farm connected with multi-machine power system. A novel direct-current based d-q vector control technique of back to back converter integrated with Fuzzy Logic Controller for optimal control configuration is proposed, in which both active and reactive powers delivered to a power grid system are controlled effectively. Simulation analyses have been performed using PSCAD/EMTDC. Simulation results show that the proposed control scheme is very effective to enhance the voltage stability of the wind farm during fault condition.

Implementation of Grid-interactive Current Controlled Voltage Source Inverter for Power Conditioning Systems

  • Ko Sung-Hun;Shin Young-Chan;Lee Seong-Ryong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.382-391
    • /
    • 2005
  • Increasing of the nonlinear type power electronics equipment, power conditioning systems (PCS) have been researched and developed for many years in order to compensate for harmonic disturbances and reactive power. PCS's not only improve harmonic current and power factor in the ac grid line but also achieves energy saving used by the renewable energy source (RES). In this paper, the implementation of a current controlled voltage source inverter (CCVSI) using RES for PCS is presented. The basic principle and control algorithm is theoretically analyzed and the design methodology of the system is discussed. The proposed system could achieve power quality control (PQC) to reduce harmonic current and improve power factor, and demand side management (DSM) to supply active power simultaneously, which are both operated by the polarized ramp time (PRT) current control algorithm and the grid-interactive current control algorithm. A 1KVA test model of the CCVSI has been built using IGBT controlled by a digital signal processor (DSP). To verify the proposed system, a comprehensive evaluation with theoretical analysis, simulation and experimental results is presented.

간략화된 풍력발전기 모델링과 계통연계 조건에 따른 PCC 전압 변동량 계산 (Simplified Wind Turbine Modeling and Calculation of PCC Voltage Variation according to Grid Connection Conditions)

  • 임지훈;송승호
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2402-2409
    • /
    • 2009
  • This paper proposed a simple and helpful analysis model of voltage variation in order to predict the voltage variation at PCC (Point of Common Coupling), when a wind turbine is connected in an isolated grid. The PCC voltage flucuates when the wind turbine outputs active power to an isolated grid. This voltage variation is proportional to the product of the line impedance from the ideal generator to the PCC and the wind turbine output current. And It is different according as where wind turbine is connected. To solve the problem of voltage variation, this paper proposed the reactive power control. To verify the proposed analysis model, this paper utilized PSCAD/EMTDC Simulation and the field measurement data of the voltage variation during the wind power generation.

12상 다중 GTO 인버터 (12 Phase Multiple GTO Inverter)

  • 오동섭;이규종;성세진;최수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.291-294
    • /
    • 1990
  • Fuel cell system needs DC-AC conversion inverter system because its output is DC. And the inverter system can be operated not only in stand-alone load but also in interactive mode in interactive mode, it is necessary to control active-reactive power of inverter and to synchronize inverter output voltage to power line voltage. In this paper, a 12 phase multiple VSI type GTO inverter system for fuel cell is described. Synchronization between power line voltage phase and inverter output voltage phase, and reduction of harmonics in the output voltage phase are the purpose of this inverter system. This control algorithm for the system is realized by the software method utilizing 8031AH 8bit Microprocessor.

  • PDF

전력계통 해석에 미치는 UPFC의 영향에 관한 연구 (A Study on the effect of UPFC to the power system analysis)

  • 김덕영;이지열;김필수;국경수;오태규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.262-264
    • /
    • 2000
  • This paper presents an effect of UPFC to the power system analysis. UPFC is equivalently represented as a synchronous condenser and load, while the active and reactive power of the specific transmission line and the voltage of the bus is scheduled appropriately. This procedure is implemented by IPLAN which is an application program in PSS/E. The simulation results show that UPFC is very effective to control the transmission line over-load and bus voltage variation.

  • PDF

UPFC 설치 전력계통의 전력조류해석 및 제어에 관한 연구 (A Study on Power Analysis and Control of Power System With UPFC)

  • 김경신;정재길;정인학;나완기;조양행
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.25-27
    • /
    • 2000
  • The unified flow controller(UPFC) is one of the most effective devices among the FACTS device family. In principle the UPFC is capable of controlling active and reactive power as well as the voltage magnitude can. Comparisons are made between the proposed and the existing UPFC models, which demonstrate the improvement in both flexibility and efficiency.

  • PDF

시뮬레이션과 축소모형에 의한 UPFC의 성능해석 (Performance Analysis of UPFC by Simulation & Scaled Hardware Model Test)

  • 한병문;박지용;정진규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2475-2477
    • /
    • 1999
  • This paper describes a simulation model and scaled hardware model to analyze the dynamic performance of Unified Power Flow Controller, which adjust flexibly the active and reactive power flow through the ac transmission line. The design of control system was developed using vector control method. The results of simulation and scaled hardware test show that the developed control system works accurately. And both models are very effective to analyze the dynamic performance of the Unified Power Flow Controller.

  • PDF

Wireless Paralleled Control Strategy of Three-phase Inverter Modules for Islanding Distributed Generation Systems

  • Guo, Zhiqiang;Sha, Deshang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • 제13권3호
    • /
    • pp.479-486
    • /
    • 2013
  • This paper presents a control strategy for distributed systems, which can be used in islanded microgrids. The control strategy is based on the droop method, which uses locally measured feedback to achieve load current sharing. Instead of the traditional droop method, an improved one is implemented. A virtual inductor in the synchronous frame for three-phase inverters is proposed to deal with the coupling of the frequency and the amplitude related to the active and reactive power. Compared with the traditional virtual inductor, the proposed virtual inductor is not affected by high frequency noises because it avoids differential calculations. A model is given for the distributed generation system, which is beneficial for the design of the droop coefficients and the value of the virtual inductor. The effectiveness of the proposed control strategy is verified by simulation and experiment results.

18-step Back-to-Back Voltage Source Converter with Pulse Interleaving Circuit for HVDC Application

  • Lee, Hye-Yeon;Jeong, Jong-Kyou;Lee, Ji-Heon;Han, Byung-Moon;Choi, Nam-Sup;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.435-442
    • /
    • 2010
  • This paper proposes an 18-step back-to-back (BTB) voltage source converter using four sets of 3-Level converter modules with auxiliary circuits to increase the number of steps. The proposed BTB voltage source converter has the independent control capability of active power and reactive power at the interconnected ac system. The operational feasibility of the proposed BTB converter was verified through many simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was verified through experimental results with a scaled hardware prototype. The proposed BTB converter could be widely applied for interconnecting the renewable energy source to the power grid.