• 제목/요약/키워드: Active and reactive power

검색결과 446건 처리시간 0.025초

유도전동기 효율향상에 따른 역률 보상 콘덴서 최적 선정에 대한 연구 (A Study on the Optimum Selection of the Power Factor Compensation Condenser According to the Improved Efficiency of Induction Motor)

  • 김종겸
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1311-1315
    • /
    • 2016
  • Induction motor requires a rotating magnetic field for rotation. Current required to generate the rotating magnetic field is immediately magnetizing current. This magnetizing current is associated with the reactive power. Induction motor is always required reactive power. If reactive power is supplied only to the power supply side, the power factor is low. Therefore, it is to compensate the power factor by connecting capacitors in parallel to the motor terminal. If the capacitor current is greater than the magnetizing current of the motor, there is a possibility that the self-excitation occurs. High voltage generated by the self-excitation leads to insulation failure on the motor. So it is necessary to calculate the power factor correction capacitor capacity the most suitable to the extent that the magnetizing current does not exceed the capacitor current. In this study, we first computed the magnetization current and the reactive power of the induction motor and then calculates a limit of the maximum power factor by comparing the magnetizing current and the capacitor current installed in order to achieve the target power factor.

계통안정도 개선을 위한 SMES 제어모델에 관한 연구 (Superconducting Magnetic Energy Storage (SMES) Control Models for the Improvement of Power System Stability)

  • 함완균;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.501-503
    • /
    • 2005
  • Superconducting Magnetic Energy Storage (SMES) can inject or absorb real and reactive power to or from a power system at a very fast rate on a repetitive basis. These characteristics make the application of SMES ideal for transmission grid control and stability enhancement. The purpose of this paper is to introduce the SMES model and scheme to control the active and reactive power through the power electronic device.

  • PDF

능동 필터 기능을 갖는 무정전전원장치의 정적 스위치 제어 (Static Switch Control of UPS with Active Filter Function)

  • 홍현문;전병석;김종근;이상훈;김재식;민완기
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 춘계학술대회논문집
    • /
    • pp.406-408
    • /
    • 2005
  • In this literature, when the utility line is normal, the Off-Line UPS operates as an active power filter to compensate the reactive power from a load, and when the utility line is in outage, the On-Line UPS opuates as in single phase inverter to supply an active and reactive power to the load. An additional static switch in UPS was used to decrease an transient state during these mode changes. And the result shows that the transient state disappeared.

  • PDF

모드절환식 다기능 무정전 전원장치 (Multifunctional UPS with Mode Transfer Method)

  • 김제흥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1049-1051
    • /
    • 2001
  • This paper proposes a new control strategy of multifunctional uninterruptible power supply(UPS) with the performance of active power filter which compensate the harmonics and reactive power. To improve the transient response for the effective compensation in active power filter mode, it is considered that a simple and precise calculation method of the compensation reference current for the harmonics and reactive power compensation. So a novel closed-loop control strategy is used to calculate the reference current. And the current regulated instantaneous voltage control scheme is used in back-up power mode. The system model and control algorithm are described and analyzed, and the system performance is verified by the simulation results.

  • PDF

제주 동기조상기 교체에 따른 계통안정성 영향 연구 (The Affections of System Stability on Replacing the Synchronous Condenser in Jeju Island)

  • 장병훈;윤종수;한정열;심정운;강상균;이병준
    • 전기학회논문지
    • /
    • 제56권10호
    • /
    • pp.1715-1720
    • /
    • 2007
  • The CSC-based HVDC system links the Jeju system to the mainland system. Because CSC-based HVDC is installed in Jeju, the reactive power is needed to transfer active power through the HVDC. In order to supply reactive power, switched capacitors and synchronous condensers are installed in Jeju system. The deterioration of established synchronous condensers, however, causes a reactive power supply capability decline and high maintenance cost. It brings about the instability of Jeju system and the incremental of maintenance and repair costs. In the future the installation of wind generators and additional HVDC system would aggravate the stability of Jeju system. Therefore, it needs to consider a countermeasure against above problems. In this paper, Analysis of several contingencies of Jeju system was peformed, and some contingencies caused voltage-reactive power problem was known. CPF method was introduced in order to make countermeasures to replace the synchronous condensers and to solve the voltage-reactive power problem. The location and capacity of reactive power sources were also decided. It could guarantee medium and long term stability of Jeju system.

제주계통의 무효전력보상을 위한 SVC와 STATCOM의 운전특성 비교 (The Comparison of Operating Characteristics of SVC and STATCOM for Compensating the Reactive Power in the Jeju Power System)

  • 이승민;김일환;김호민;오성보;이도헌
    • 한국태양에너지학회 논문집
    • /
    • 제35권3호
    • /
    • pp.49-56
    • /
    • 2015
  • This paper presents a comparative operating characteristics of static var compensator(SVC) and static synchronous compensator(STATCOM) for compensating the reactive power in the Jeju power system. There are two kinds of reactive power compensating systems, which are active and passive system in the applications of the line commutated converter type high voltage direct current (LCC-HVDC). In the Jeju power system, two STATCOMs as active compensating system have been operating. Even though STATCOM has good performance compared with SVC, economical efficiency of former system is not good to the latter system. So, it is necessary to examine the performance and economical efficiency depend on the intention before appling the system. To compare the operating characteristics of two systems in the Jeju power system, simulations have been carried out for case studies that both of the HVDC system have transient state by using PSCAD/EMTDC program.

가상 자속관측기를 이용한 3상 AC/DC PFC PWM 컨버터의 직접 전력 센서리스 제어 (Direct Power Sensorless Control of Three-Phase AC/DC PFC PWM Converter using Virtual Flux Observer)

  • 김영삼;권영안
    • 전기학회논문지
    • /
    • 제61권10호
    • /
    • pp.1442-1447
    • /
    • 2012
  • In this paper, direct power control system for three-phase PWM AC/DC converter without the source voltage sensors is proposed. The sinusoidal input current and unity effective power factor are realised based on the estimated flux in the observer. Both active and reactive power calculated using estimated flux. The estimation of flux is performed based on the Reduced-order flux observer using the actual currents and the command control voltage. The source voltage sensors are replaced by a flux estimator. The active and reactive powers estimation are performed based on the estimated flux and Phase anble. The proposed algorithm is verified through simulation and experiment.

역률개선 및 고조파 보상을 위한 능동전력필터에 관한 연구 (A Study on Active Power Filter for Compensation of Power Factor and Harmonic Currents)

  • 김용호;김진수;권기현;정용호;최경수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.1074-1076
    • /
    • 1992
  • By using nonlinear loads in power line, reactive power and harmonics are occured. In this thesis, on the basis of the instantaneous reactive power theory, the calculation method of compensation current commands and the current control characteristics of active power filter using voltage source PWM converter are presented. The calculation of compensation current is performed by DSP within 50 usec. And the Pl control of current is performed by analog devices. The compensations of harmonic current in rectifier loads and unbalance currents are proved by experiments.

  • PDF

분산전원의 무효전력 보상을 통한 PCC 전압 변동 제어 (Control of PCC Voltage Variation by Reactive Power Compensation of Distributed Source)

  • 한상훈;임종웅;한유;조영훈;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.180-181
    • /
    • 2017
  • Recently as distributed source has increased, the distribution system has changed from unidirectional power flow to bi-directional power flow. This power flow causes the PCC voltage variation, which can adversely affect voltage sensitive loads. In this paper, the relation between the active power, reactive power and PCC voltage of the distributed source is analyzed, and the PCC voltage control scheme by reactive power compensation is proposed in the distributed source itself. In addition, limitations and conditions according to the standard for interconnecting distributed resources are specified and verified through simulation.

  • PDF

Coordinated Control of Reactive Power between STATCOMs and Wind Farms for PCC Voltage Regulation

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Van, Tan Luong;Kang, Jong-Ho
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.909-918
    • /
    • 2013
  • This paper proposes a coordinated control of the reactive power between the STATCOMs (static synchronous compensators) and the grid-side converters (GSC) of wind farms equipped with PMSGs (permanent-magnet synchronous generators), by which the voltage fluctuations at the PCC (point of common coupling) are mitigated in the steady state. In addition, the level of voltage sags is reduced during grid faults. To do this, the GSC and the STATCOM supply reactive power to the grid coordinately, where the GSCs are fully utilized to provide the reactive power for the grid prior to the STATCOM operation. For this, the GSC capability of delivering active and reactive power under variable wind speed conditions is analyzed in detail. In addition, the PCC voltage regulation of the power systems integrated with large wind farms are analyzed for short-term and long-term operations. With this coordinated control scheme, the low power capacity of STATCOMs can be used to achieve the low-voltage ride-through (LVRT) capability of the wind farms during grid faults. The effectiveness of the proposed strategy has been verified by PSCAD/EMTDC simulation results.