• Title/Summary/Keyword: Active State

Search Result 1,741, Processing Time 0.028 seconds

Active and Semi-Active Vibration Control of Piezoelectric Smart Structures Using a Pseudo-Sensor-Output-Feedback Method (PSOF 방법을 이용한 압전 지능 구조물의 능동 및 반능동 진동제어)

  • 김영식;김영태;오동영
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.70-76
    • /
    • 1999
  • This paper presents a pseudo-sensor-output-feedback(PSOF) method for the vibration suppression of the flexible piezoelectric smart structures. This method reduces the modeling errors using pseudo sensors in the output equation formulation. It also reduces computation time in practice. since the output equation does not need the state observer required in the state space equation. Experimental works are performed for the validation of theoretical predictions with the piezoelectric sensor and actuator bonded on the cantilever beam. An algorithm based on the sliding mode control theory is developed and analyzed for the robustness to the modeling errors and parameter uncertainties. This study also discusses the characteristics of the active and semi-active systems.

  • PDF

The Power Flow Control of UPFC for Cost Minimization

  • Lim, Jung-Uk;Moon, Seung-Il
    • KIEE International Transactions on Power Engineering
    • /
    • v.12A no.1
    • /
    • pp.31-35
    • /
    • 2002
  • This paper presents a new operation scheme of UPFC to minimize both generation costs and active power losses in a normal operation state of power system. In a normal operation, cost minimization is a matter of primary concern among operating objectives. This paper considers two kinds of costs, generation costs and transmission losses. The total generation cost of active powers can be minimized by optimal power flow, and active power losses in the transmission system can be also minimized by power flow control of UPFC incorporated with minimization of generation costs. In order to determine amounts of active power reference of each UPFC required for the cost minimization, an iterative optimization algorithm based on the power flow calculation using the decoupled UPFC model is proposed. For verification of the proposed method, intensive studies have been performed on a 3-unit 6-bus system equipped with a UPFC.

Simulation of Active Compensated Pulsed Alternator with a Laser Flashlamp Load Based on Simplified Model

  • Yuan, Pei;Yu, Kexun;Ye, Caiyong;Ren, Zhang'ao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.434-439
    • /
    • 2012
  • This paper presents a nontraditional laser power system in which an active compensated pulsed alternator (ACPA) drives a flashlamp directly without the use of capacitor groups. As a result, the volume of the laser system is decreased because of the high energy density of the ACPA. However, the difficulty in matching the output of the alternator with the laser flashlamp is a significant issue and needs to be well analyzed. In order to solve this problem, based on the theory for ACPA, the authors propose a simplified model for the system of ACPA with flashlamp load by the way of circuit simulation. The simulation results preliminarily illuminate how the performance of the ACPA laser power system is affected. Meanwhile, the simulation results can also supply a consultation for future ACPA laser power system design and control.

Research on the Inter-harmonics Equivalent Impedance of Series Hybrid Active Power Filter

  • Jian-gong, Zhang;Jian-ben, Liu;Shao-jun, Dai;Qiao-fu, Chen;Jun-jia, He
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2062-2069
    • /
    • 2015
  • In the series hybrid active power filter (SHAPF) with magnetic flux compensation (MFC), the system current oscillate in the experimental results when adding the same phase harmonic current command in current control block. This condition endangers the security of the SHAPF. Taking the digit period average arithmetic as example, this paper explains the inter-harmonics current oscillation in the experiment. The conclusion is that the SHAPF is unstable to the inter-harmonics current in theory. Limited by the capacity of the inverter, the system current and the inverter output current do not increase to infinite. At last, some methods are proposed to solve this problem. From the practical viewpoint, the voltage feed-forward control is easy to achieve. It can suppress the current oscillation problems, and also improve the filtering effect. The feasibility of the methods is validated by both the emulation and experiment results.

Phase Shift Control for Series Active Voltage Quality Regulators

  • Xiao, Guochun;Teng, Guofei;Chen, Beihai;Zhang, Jixu
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.664-676
    • /
    • 2012
  • A phase shift algorithm based on the closed-loop control of dc-link voltage implemented on a series active voltage quality regulator (AVQR) is proposed in this paper. To avoid pumping-up the dc-link voltage, a general phase shift compensation strategy is applied. The relationships among the operation variables are discussed in detail, which is very important for guiding the design of both the main circuit and the control system. Then on the basis of an investigation of the dc-link voltage pumping-up from viewpoint of the active power flow, a novel phase shift control method based on the closed-loop of the dc-link voltage is proposed. This method can adjust the phase of the output voltage gradually and automatically according to the dc-link voltage variation without introducing a phase jump. The effectiveness of the proposed strategy is verified through simulations of a single-phase 5kVA prototype and laboratory experiments on both a single-phase 5kVA and a three-phase 15kVA prototype.

Force Depression Following Active Muscle Shortening during Voluntary Contraction in Human Tibialis Anterior Muscle (인체 전경골근의 수의적 수축시 선행 동심성 근수축이 항정상태 등척성 근력에 미치는 영향)

  • Lee, Hae-Dong;Lee, Seung-Cheol
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.75-83
    • /
    • 2006
  • The purpose of this study was to investigate steady-state force depression following active muscle shortening in human tibialis anterior muscle during voluntary contractions. Subjects (n = 7; age $24{\sim}39$ years; 7 males) performed isometric reference contractions and isometric-shortening-isometric contractions, using maximal voluntary effort. Force depression was assessed by comparing the steady-state isometric torque produced following active muscle shortening with the purely isometric reference torque obtained at the corresponding joint angle. In order to test for effects of the shortening conditions on the steady-state force depression, the speed of shortening were changed systematically in a random order but balanced design. Ankle dorsiflexion torque and joint angle were continuously measured using a dynamometer. During voluntary contractions, muscle activation of the tibialis anterior and the medical gastrocnemius was recorded using surface electromyography. Force depression during voluntary contractions, with a constant level of muscle activation, was 12 %, on average over all subjects. Force depression was independent of the speeds of shortening ($13.8{\pm}2.9%$, $10.3{\pm}2.6%$ for 15 and 45 deg/sec over 15 deg of shortening, respectively). The results of this study suggest that steady-state force depression is a basic property of voluntarily-contracting human skeletal muscle and has functional implication to human movements.

Application of a C-Type Filter Based LCFL Output Filter to Shunt Active Power Filters

  • Liu, Cong;Dai, Ke;Duan, Kewei;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1058-1069
    • /
    • 2013
  • This paper proposes and designs a new output filter called an LCFL filter for application to three phase three wire shunt active power filters (SAPF). This LCFL filter is derived from a traditional LCL filter by replacing its capacitor with a C-type filter, and then constructing an L-C-type Filter-L (LCFL) topology. The LCFL filter can provide better switching ripple attenuation capability than traditional passive damped LCL filters. The LC branch series resonant frequency of the LCFL filter is set at the switching frequency, which can bypass most of the switching harmonic current generated by a SAPF converter. As a result, the power losses in the damping resistor of the LCFL filter can be reduced when compared to traditional passive damped LCL filters. The principle and parameter design of the LCFL filter are presented in this paper, as well as a comparison to traditional passive damped LCL filters. Simulation and experimental results are presented to validate the theoretical analyses and effectiveness of the LCFL filter.

Active control for Seismic Response Reduction using Modal-fuzzy Approach (모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어)

  • Choi, Kang-Min;Cho, Sang-Won;Oh, Ju-Won;Lee, In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.409-416
    • /
    • 2004
  • An active modal-fuzzy control method using hydraulic actuators is presented for seismic response reduction. In the proposed control system, a new fuzzy controller designed in the modal space produces the desired active control force. This type controller has all advantages of the fuzzy control algorithm and modal approach. Since it is very difficult to select input variables used in fuzzy controller among an amount of state variables in the active fuzzy control system the presented algorithm adopts the modal control algorithm which is able to consider more easily information of all state variables in civil structures that are usually dominated by first few modes. In other words, all information of the whole structure can be considered in the control algorithm evaluated to reduce seismic responses and it can be efficient for especially civil structures. In addition, the presented algorithm is expected to magnify utility and performance caused by efficiency that the fuzzy algorithm can handle complex model more easily. An active modal-fuzzy control scheme is applied together with a Kalman filter and a low-pass filter to be applicable to real civil structures. A Kalman filter is considered to estimate modal states and a low-pass filter was used to eliminate spillover problem. The results of the numerical simulations far a wide amplitude range o f loading conditions and for historic earthquakes having various frequency components show that the proposed active modal-fuzzy control system can be beneficial in reducing seismic responses of civil structures.

  • PDF

Active control for Seismic Response Reduction using Modal-fuzzy Approach (모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어)

  • Choi, Kang-Min;Park, Kyu-Sik;Kim, Chun-Ho;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.513-520
    • /
    • 2005
  • An active modal-fuzzy control method using hydraulic actuators is presented for seismic response reduction. In the proposed control system, a new fuzzy controller designed in the modal space produces the desired active control force. This type controller has all advantages of the fuzzy control algorithm and modal approach. Since it is very difficult to select input variables used in fuzzy controller among an amount of state variables in the active fuzzy control system, the presented algorithm adopts the modal control algorithm which is able to consider more easily information of all state variables in civil structures that are usually dominated by first few modes. In other words, all information of the whole structure can be considered in the control algorithm evaluated to reduce seismic responses and it can be efficient for especially civil structures. In addition, the presented algorithm is expected to magnify utility and performance caused by efficiency that the fuzzy algorithm can handle complex model more easily. An active modal-fuzzy control scheme is applied together with a Kalman filter and a low-pass filter to be applicable to real civil structures. A Kalman filter is considered to estimate modal states and a low-pass filter was used to eliminate spillover problem. The results of the numerical simulations for a wide amplitude range of loading conditions show that the proposed active modal-fuzzy control system can be beneficial in reducing seismic responses of civil structures.

  • PDF